项目名称: 风电机组关键部件故障趋势预测方法研究

项目编号: No.51305135

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 滕伟

作者单位: 华北电力大学

项目金额: 23万元

中文摘要: 风电机组是可再生能源产业中的重要装备,而我国在役机组存在故障率高、寿命短等问题。关键部件故障趋势预测是以风电机组的主轴轴承、齿轮箱和发电机的运行状态为基础,结合历史数据、结构特性和运行工况,对机组未来可能出现的故障进行预测和判断,实现风电产业的预知维护和高效运营。项目针对风电机组传动链长、故障点多、频带覆盖宽等特点,研究其关键部件多载波故障调制模型;考虑风载荷等复杂激励对风电机组的影响,提出基于盲源解卷的方法进行振动信号分解,以获取故障敏感独立成分和噪声,构建反映故障变化程度的特征指标,实现故障特征与随机非故障能量的分离;以隐半Markov模型为理论基础,建立基于故障特征数据驱动的故障预测模型,预测关键部件故障状态发展趋势,通过对比分析与现场跟踪的方法验证预测模型的准确性。项目的研究对于形成风电产业合理高效的维修体制,降低风电机组的运营维护成本具有重要的理论与现实意义。

中文关键词: 风电机组;故障检测;特征提取;寿命预测;运行维护

英文摘要: Wind turbine is the crucial equipment in renewable energy industry, whereas there lie some disadvantages such as high failure rates and short life-span in our domestic wind turbine in service. Based on the current operation status of bearing of main axis, gearbox and generator in wind turbine, and combining histroy data, structural characteristics and operation conditions, failure prediction for key components is an attractive technology to predict and determine the future failure status and realize precognition maintenance and high efficient operation for wind power industry. In this project, a multi-carrier-wave failure modulation model is built with the consideration of the characteristics of long drivetrain, multi-failure points and wide frequency band etc. Considering the effect of random wind load acting on wind turbine, the blind source deconvolution is adopted to decompose the vibration signal and independent components which are sensitive to fault and noise are obtained. Through constructing the characteristic index reflecting the fault level, the fault feature is separated from the non-failure energe in the vibration signal. Through hidden semi-Markov model, a failure prediction model is built based on data driven method of extracted fault feature to predict the failure trend of key components in wind

英文关键词: Wind turbines;Fault detection;Feature extraction;Life prognostic;Operation and maintenance

成为VIP会员查看完整内容
2

相关内容

智能交通管理系统发展趋势
专知会员服务
19+阅读 · 2022年3月21日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
47+阅读 · 2020年12月4日
专知会员服务
103+阅读 · 2020年11月27日
工业人工智能的关键技术及其在预测性维护中的应用现状
专知会员服务
219+阅读 · 2020年8月1日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
人工智能在设备状态评价和故障诊断中的应用
NE电气
23+阅读 · 2018年11月17日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
15+阅读 · 2020年2月5日
小贴士
相关VIP内容
智能交通管理系统发展趋势
专知会员服务
19+阅读 · 2022年3月21日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
47+阅读 · 2020年12月4日
专知会员服务
103+阅读 · 2020年11月27日
工业人工智能的关键技术及其在预测性维护中的应用现状
专知会员服务
219+阅读 · 2020年8月1日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
人工智能在设备状态评价和故障诊断中的应用
NE电气
23+阅读 · 2018年11月17日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
28+阅读 · 2021年9月26日
Arxiv
15+阅读 · 2020年2月5日
微信扫码咨询专知VIP会员