项目名称: 基于离子扩散行为获取高储能密度瓷介超级电容器材料的试验研究

项目编号: No.51302061

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王静

作者单位: 河北大学

项目金额: 25万元

中文摘要: 为解决电能的存储问题,本课题研究了一种具有高储能密度的钛酸钡基瓷粉。由于电容器的存储能力取决于介电常数和介电强度,本课题组首次提出了离子的扩散行为对介电性能的重要影响,并基于离子扩散机理设计和制备了由两种成分不同的钛酸钡基铁电相包覆而成的纳米粉晶,不仅避免了传统固相法中混入大量非铁电相导致介电常数降低的缺点,而且还能大幅度提高介电常数;通过在粉晶表面沉积ZnO以抑制晶粒生长、吸收晶界缺陷,从而提高材料的介电强度,最终实现提高材料存储能力的目的。本项目以廉价的无机盐为原料,采用水热法制备Ba0.985Bi0.01TiO3-BaTi1-xZrxO3-ZnO纳米粉体,利用一步烧结法和两步烧结法制备陶瓷,通过调控工艺参数和离子的扩散行为,制备出具有高能量密度的陶瓷电容器材料。该项目的研究为解决能源存储问题提供了理论参考,对促进我国电池行业的发展具有重要意义。

中文关键词: 储能;介电常数;耐压强度;能量密度;

英文摘要: In order to solve the problem of electric-energy storage, a kind of barium titanate ceramic powders with high energy density is studied. The storage ability of capacitor depends on the dielectric constant and dielectric strength. The significant impacts of ion diffusion behavior on the dielectric constant was first proposed. The nanopowders composed of two ferroelectric phases were designed and synthesized, based on the ion diffusion mechanism. This material not only aviods the disadvantage of low permittivity by traditional solid-state method, but also increase the permittivity greatly. ZnO depsited on the surface of powders suppresses the grain growth and absorbs defects in the crystal boundary, so that the dielectric strength is increased. Through measures mentioned above, the storage ability of capacitor can be improved. In this study, cheap inorganic salts are used as raw materials. Ba0.985Bi0.01TiO3-BaTi1-xZrxO3-ZnO nanopowders were synthesized by hydrothemal method. Ceramics were prepared by one-step and two-step sintering methods. Through controlling the technological parameter and ion diffusion behavior, ceramic capacitors with high energy density will be obtained finally. This study will provide a theoretical reference to the energy storage, and promote the development of the battery industry of our c

英文关键词: energy storage;permittivity;dielectric strength;energy density;

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
25+阅读 · 2021年3月11日
专知会员服务
24+阅读 · 2021年1月30日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR2021】神经网络中的知识演化
专知会员服务
25+阅读 · 2021年3月11日
专知会员服务
24+阅读 · 2021年1月30日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员