在很多真实应用中,数据以流的形式不断被收集得到.由于数据收集环境往往发生动态变化,流数据的分布也会随时间不断变化.传统的机器学习技术依赖于数据独立同分布假设,因而在这类分布变化的流数据学习问题上难以奏效.本文提出一种基于决策树模型重用的算法进行分布变化的流数据学习.该算法是一种在线集成学习方法:算法将维护一个模型库,并通过决策树模型重用机制更新模型库.其核心思想是希望从历史数据中挖掘与当前学习相关的知识,从而抵御分布变化造成的影响.通过在合成数据集和真实数据集上进行实验,我们验证了本文提出方法的有效性.