项目名称: 希尔伯特变换及其截断反演的快速算法研究

项目编号: No.11301296

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 余波

作者单位: 三峡大学

项目金额: 22万元

中文摘要: 希尔伯特变换和截断希尔伯特变换的反演是解决许多工程问题的重要数学工具,但目前尚无令人满意的快速算法,其主要原因在于难以降低计算的复杂度。本项目将开展以下研究:1、通过一组基来刻画系数满足一定条件的B-样条生成空间在希尔伯特变换作用下的像空间的空间结构;2、通过对样条小波在希尔伯特变换作用下性质的研究,挖掘其能用于发展快速算法的特性;3、利用前面的研究结果发展希尔伯特变换的快速算法,给出算法的复杂度分析和误差分析;4、利用B-样条在截断希尔伯特变换作用下的特性发展截断希尔伯特变换的反演的快速算法,并将其应用于单光子发射计算机断层图像和CT 图像的重构。本项目的研究将推动希尔伯特变换和截断希尔伯特变换的反演在实际问题中的广泛应用,尤其是在计算机断层图像重构方面的应用,因此,本项目具有重要的理论价值和实际应用意义。

中文关键词: 希尔伯特变换;截断希尔伯特变换的反演;样条函数;样条小波;快速算法

英文摘要: The Hilbert transform and the inversion of the truncated Hilbert transform are important mathematical tools for many engineering problems. However, there is no satisfying fast algorithm for these two transforms now.The difficulty lies in how to reduce the computational complexity. In this project, we will focus on the following problems: 1.To characterize the structure of the space which is the Hilbert transform of the span space of B-splines whose coefficients satisfy some conditions. 2. To figure out some special properties of the Hilebrt transform of spline wavelets which can be used to develop fast algorithms. 3.To develop fast algorithms for computing the Hilbert transform, with the results in Problem 1 and 2, as well as to analyze the complexity and the error bound of these algorithms. 4. To develop fast algorithms for computing the inversion of the truncated Hilbert transform, and then reconstruct the single photon emission computed tomography image and the CT image by using the proposed fast algorithms. The research of this project will be benefical to the various application of the Hilbert transform and the inversion of the truncated Hilbert transform in practical problems, especially in the image reconstruction in computed tomography. Therefore, it is of practical significance and theoretical value to

英文关键词: Hilbert transform;inverse of truncated Hilbert transform;spline functions;spline wavelets;fast algorithms

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
35+阅读 · 2021年9月12日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
视频 | 傅里叶级数与傅里叶变换
遇见数学
11+阅读 · 2018年2月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
35+阅读 · 2021年9月12日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
94+阅读 · 2021年2月6日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
相关资讯
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
40+阅读 · 2018年4月26日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
视频 | 傅里叶级数与傅里叶变换
遇见数学
11+阅读 · 2018年2月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员