项目名称: 图谱性质的研究

项目编号: No.11301093

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 游志福

作者单位: 广东技术师范学院

项目金额: 22万元

中文摘要: 图谱理论是代数图论中的一个重要课题之一。 其主要通过图的特征值来刻画图的结构性质。 本项目着重于图谱理论的深入和拓广。 研究的内容以图的谱半径、图的拉普拉斯谱、无号拉普拉斯谱,以及由DNA序列所决定的线距离矩阵的谱为研究对象。项目预期彻底解决非正则图的谱半径猜想, 研究图的拟拉普拉斯能量与Kirchhoff指数的关系,以找出某些图类中关于拟拉普拉斯能量的极图;结合矩阵和不等式理论,以解决一个关于图的拉普拉斯谱和的猜想;利用谱展和拉普拉斯谱展的方法和技巧,研究无号拉普拉斯谱展。并把图谱理论推广到线距离矩阵及与DNA序列相关的矩阵。项目的研究成果对完善和发展图谱理论有重要意义。

中文关键词: 图谱;Kirchhoff指标;拟拉普拉斯能量;Rancid指标;化学拓扑指标

英文摘要: Graph spectrum is one of important topics in algebraic graph theory. It mainly uses the eigenvalues of graphs to study the constructive properties of graphs. This project concentrates on the depth and extension of spectral graph theory. The contents include the spectral radius, Laplacian spectrum,signless Laplacian spectrum of graphs and the line distance matrix associated with DNA sequence. In this project, it will be expected to solve a conjecture on the spectral radius of non-regular graphs, and study the relation between the Laplacian-like-energy invariant and Kirchhoff index and find the extremal graphs on the Laplacian-like-energy among some graph classes. We will combine the matrix and inequality theories to solve a conjecture on the sum of Laplacian eigenvalues. By using the ways and techniques on the spread and Laplacian spread, we will study the signless Laplacian spread. Also we will extent spectral graph theory to the line distance matrix and matrices associated with DNA sequence. It is significant for enriching and developing spectral graph theory.

英文关键词: Graph spectrum;Kirchhoff index;Laplacian-energy-like;Randic index;Chemical topological index

成为VIP会员查看完整内容
0

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
专知会员服务
212+阅读 · 2021年8月2日
【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
专知会员服务
29+阅读 · 2021年4月12日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
104+阅读 · 2021年3月1日
专知会员服务
139+阅读 · 2020年12月3日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
科技大数据知识图谱构建方法及应用研究综述
专知会员服务
135+阅读 · 2020年8月12日
专知会员服务
87+阅读 · 2020年8月2日
【预告】CSIG脑图谱与类脑智能前沿交叉学科论坛将于11月27日召开
中国图象图形学学会CSIG
0+阅读 · 2021年11月26日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
领域应用 | 知识图谱的技术与应用
开放知识图谱
17+阅读 · 2018年6月14日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关主题
相关VIP内容
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
专知会员服务
212+阅读 · 2021年8月2日
【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
专知会员服务
29+阅读 · 2021年4月12日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
104+阅读 · 2021年3月1日
专知会员服务
139+阅读 · 2020年12月3日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
科技大数据知识图谱构建方法及应用研究综述
专知会员服务
135+阅读 · 2020年8月12日
专知会员服务
87+阅读 · 2020年8月2日
相关资讯
【预告】CSIG脑图谱与类脑智能前沿交叉学科论坛将于11月27日召开
中国图象图形学学会CSIG
0+阅读 · 2021年11月26日
学会原创 | 自然语言的语义表示学习方法与应用
中国人工智能学会
11+阅读 · 2019年3月7日
领域应用 | 知识图谱的技术与应用
开放知识图谱
17+阅读 · 2018年6月14日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员