项目名称: 三维网状热功能结构成形机理及多尺度形貌生成控制

项目编号: No.51305408

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 贺占蜀

作者单位: 郑州大学

项目金额: 25万元

中文摘要: 目前,热流密度过高而散热空间狭小是高集成微电子芯片面临的一大难题。鉴于此,申请人提出一种表面叠加多尺度形貌的三维网状热功能结构,此结构能够显著强化传热,是解决该难题的一种有效途径。项目将研究多刀叠合同步铣削时三维网状热功能结构的成形机理,揭示微通道、毛刺以及协同生成的刀痕、褶皱等多尺度形貌的生成机理;并建立刀具参数、切削用量、切削热等因素与多尺度形貌的数学模型,从而实现控制生成多尺度形貌;同时研究三维网状热功能结构的传热传质特性以及多尺度形貌对传热效率、流动阻力等特性的影响,从而实现按功能需求主动设计具有多尺度形貌的三维网状热功能结构。项目为高性能热功能结构的设计与制造提供了理论依据,并将使我国微电子热控制技术达到国际先进水平。

中文关键词: 功能结构;多尺度;微通道;铣削;传热

英文摘要: Nowadays, microelectronic chips are developing toward micromation, high-power and high level of integration. Meanwhile, the contradiction between high density heat flux and small heat dissipation space is becoming increasingly critical, so a new enhanced heat transfer structure, namely 3D mesh heat functional structure with multi-scale morphology, is proposed and fabricated with multiple slotting saws stacked together. 3D mesh heat functional structure with multi-scale morphology can significantly enhance the heat transfer performance, so it will be an effective way to resolve the contradiction. Then, the machining mechanism of 3D mesh heat functional structure is studied. And, the formation mechanism of the multi-scale morphology, such as microchannels, burrs and some scratches and folds, is analyzed. Furthermore, the influences of the cutting parameters, the cutter geometry parameters and the cutting heat on the multi-scale morphology are investigated, so as to control the formation of the multi-scale morphology. Meanwhile, the impact of the multi-scale morphology on the heat transfer performance, especially the heat efficiency and the flow friction, is studied. Finally, 3D mesh heat functional structure with multi-scale morphology can be designed and manufactured according to the functional requirement. This

英文关键词: Functional Structure;Multi-scale;Microchannel;Milling;Heat Transfer

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
134+阅读 · 2021年2月17日
专知会员服务
65+阅读 · 2020年12月24日
专知会员服务
34+阅读 · 2020年11月26日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
明基 EW2780U 影音功能到底有多震撼?
ZEALER订阅号
0+阅读 · 2022年2月9日
Redmi K50 新机定了,K40 神话靠它延续?
ZEALER订阅号
0+阅读 · 2022年2月9日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
专知会员服务
32+阅读 · 2021年6月18日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
134+阅读 · 2021年2月17日
专知会员服务
65+阅读 · 2020年12月24日
专知会员服务
34+阅读 · 2020年11月26日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
15+阅读 · 2018年6月23日
微信扫码咨询专知VIP会员