The paper is a short review of medical image segmentation using U-Net and its variants. As we understand going through a medical images is not an easy job for any clinician either radiologist or pathologist. Analysing medical images is the only way to perform non-invasive diagnosis. Segmenting out the regions of interest has significant importance in medical images and is key for diagnosis. This paper also gives a bird eye view of how medical image segmentation has evolved. Also discusses challenge's and success of the deep neural architectures. Following how different hybrid architectures have built upon strong techniques from visual recognition tasks. In the end we will see current challenges and future directions for medical image segmentation(MIS).
翻译:本文简要回顾了使用 U-Net 及其变体对医疗图像进行分解的情况。 据我们了解,通过医疗图像对任何临床放射学家或病理学家来说都不是一件容易的工作。 分析医疗图像是进行非侵入性诊断的唯一方法。 将感兴趣的地区划分为医疗图像中的重要部分,是诊断的关键。 本文还展示了医学图像分解是如何演变的。 本文还探讨了深层神经结构的挑战和成功之处。 遵循不同的混合结构是如何利用视觉识别任务的强力技术的。 最终我们将看到医疗图像分解(MIS)的当前挑战和未来方向。