项目名称: 原位制备无机纳米晶/共轭聚合物杂化材料及其光伏性质研究

项目编号: No.21204097

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 高分子科学

项目作者: 王宁

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 25万元

中文摘要: 本项目拟采用原位法制备无机纳米晶/共轭高分子杂化材料并研究其光电转化性能。设计、合成一系列主链含有噻吩、苯并噻二唑、吡咯并吡咯二酮等结构单元,侧链含有二巯基镉、二硫代氨基甲酸铅等结构的共轭聚合物作为前体聚合物,并由该前体聚合物原位生长基于窄带隙聚合物以及无机纳米晶的杂化膜,以此杂化膜作为薄膜杂化太阳能电池活性层并研究其光电转化性能。通过前体聚合物原位生成杂化太阳能电池器件活性层的方法,保证器件活性层在纳米尺度具有均匀分散性,增大共轭聚合物与纳米晶的界面接触,加快由光子激发所产生电荷的转移速度,减少电荷在传输过程中的复合,活性层中原位生成的窄带隙共轭聚合物还可以增加器件中杂化活性层的光采集性能。课题的顺利开展将加深对光电杂化薄膜结构性能关系的认识,开展一种系统优化杂化薄膜光电性能的方法,并推动有机无机薄膜杂化太阳能电池向实用化发展。

中文关键词: 共轭聚合物;无机纳米晶;杂化;光伏;

英文摘要: The project will focus on in situ preparation and photovoltaic property of hybrid materials based on inorganic nano crystals and conjugated polymers. The conjugated polymer precursors, which consist of thiophene, benzothiadiazole or diketopyrrolopyrrole units in the back bone and cadmium thiolates or lead dithiocarbamato complexes in the side chains, will be designed and synthesized. The hybrid film based on inorganic nano crystals and low band gap conjugated polymers can be generated in situ from the precursor polymers. The thin film hybrid solar cells with the hybrid film as active layer will be prepared and characterized. The strategy that in situ generation of the hybrid active film in the photovoltaic device will ensure the regular phase separation of the active layer in nano scale, enlarge the interface contact of conjugated polymers and inorganic nano particles, accelerate the transfer of the excitons and reduce the charge recombination. Furthermore, the low band gap polymer generated in situ in the active layer will enhance the light harvest ability of the hybrid active layer in the device. The smooth running of the project will let us have a further recognization for the structure-properties relationship of the hybrid materials, develop a method which can be used to optimized the photovoltaic property o

英文关键词: conjugated polymer;inorganic nanocrystals;hybrid;photovoltaic;

成为VIP会员查看完整内容
0

相关内容

光声层析成像技术的最新进展
专知会员服务
11+阅读 · 2022年5月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
DARPA可解释人工智能
专知会员服务
129+阅读 · 2020年12月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
从HPO到NAS: 自动深度学习
专知会员服务
39+阅读 · 2020年6月15日
已删除
将门创投
13+阅读 · 2019年4月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
30+阅读 · 2019年3月13日
小贴士
相关VIP内容
光声层析成像技术的最新进展
专知会员服务
11+阅读 · 2022年5月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
DARPA可解释人工智能
专知会员服务
129+阅读 · 2020年12月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
109+阅读 · 2020年12月18日
从HPO到NAS: 自动深度学习
专知会员服务
39+阅读 · 2020年6月15日
相关资讯
已删除
将门创投
13+阅读 · 2019年4月17日
相关基金
微信扫码咨询专知VIP会员