项目名称: 等离子体电路中同步传播的表面等离子体和电子之间相互作用的研究

项目编号: No.11305091

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 宋明霞

作者单位: 南京信息工程大学

项目金额: 25万元

中文摘要: 在信息膨胀的时代,信息处理的高速和高容量要求相关功能元件的高度微型化和集成化。由于目前电子元器件的发展已接近其传输速度和传输量的极限而无法满足日益增长的信息需求。而新兴的光子电路,由于受到光的衍射的限制,光子元件在尺寸上不能与纳米尺寸的电子元件相兼容。而由于表面等离子体的特殊性能,使得等离子体回路被认为是有希望解决这一问题的有效技术。在一个完整的等离子体回路中,光信号-表面等离子体和电信号-电子在同一个波导中同步传输。因此,二者之间的相互作用便成为信号传输的关键问题。本项目以银纳米线为波导,通过同步记录银纳米线中表面等离子体和电子的传输,探索二者在同步传输中的相互作用,从而确定采用等离子体回路进行信号传输的相关性能:传输的有效波矢,传输距离及传输损耗。该研究可以为优化等离子体回路波导以及未来等离子体回路的实际应用奠定理论和实验基础。

中文关键词: 银纳米线;波导;表面等离子体;电子;同步传输

英文摘要: In this information expansion era, faster information process and larger information capacity ask for a higher miniaturization and large scale integration of functional devices. Since current electric devices are approching their fundamental speed and bandwidth limit that can not keep up with the ever-increasing consumer demand. For recent emerging photonic circuitry, the dimension of photonic components is limited by the diffraction limit, and thus can not be emerged with the nanoscale electric components. Due to the unique properties of surface plasmons, plasmonic circuitry is believed to be a promising solution-effective technology for this problem. In a complete plasmonic circuitry, optical signal encoded in the form of surface plasmons and electric signal which is in the form of electrons are transported in the same waveguide. Therefore, the key problem for the information transportation in such a plasmonic circuitry is the interactions between the two elements. Using silver nanowires as surface plasmon waveguides, we investigate the interactions between surface plasmons and electrons by synchronously recording their co-propagation. Therefore determine the information propagation properties: the effective index, propagation length and propagation losses. This study can lay the theoretical and experimental f

英文关键词: silver nanowire;waveguide;surface plasmons;electrons;co-propagation

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【开放书】机器意识,236页pdf
专知会员服务
34+阅读 · 2021年7月13日
专知会员服务
46+阅读 · 2020年11月13日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
电子烟,脱去“糖衣”
创业邦杂志
0+阅读 · 2022年3月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月7日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
19+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【开放书】机器意识,236页pdf
专知会员服务
34+阅读 · 2021年7月13日
专知会员服务
46+阅读 · 2020年11月13日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员