项目名称: 铁/介孔氧化硅核壳颗粒的碳模板法合成及催化性能研究

项目编号: No.21306113

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 盛赵旻

作者单位: 上海应用技术学院

项目金额: 25万元

中文摘要: 由煤基合成气生产低碳烯烃的关键技术是催化剂的设计与制备。本申请拟开展新型铁基核壳催化剂(Fe@SiO2)合成及其催化合成气生产低碳烯烃应用的研究。提出了碳模板法制备该纳米复合催化剂的新路径:首先化学气相沉积法合成核壳结构颗粒,外壳为碳和氧化硅的复合结构,内核为铁基纳米颗粒;再将碳除去使氧化硅外壳产生介孔,形成介孔氧化硅外壳包裹铁基纳米颗粒的复合催化剂。本路径打破了该类催化剂传统制备依赖液相合成路径的局限。为明确催化剂生长机理,拟调节原料浓度、成分和反应温度等合成条件,表征其形貌变化,揭示原料的混合、热质传递和形核长大等问题,从而实现对新型催化剂形貌调控,如外壳的厚度、介孔孔容和孔径分布,内核粒径和晶型。达到利用介孔氧化硅外壳调控与内核接触的合成气成分,并分隔铁纳米颗粒防止严重烧结,保证了催化剂的转化率和稳定性。

中文关键词: 核壳结构;催化剂制备;化学气相合成;低碳烯烃合成;电化学应用

英文摘要: The key technologies for forming lower olefins from synthesis gas are designation and fabrication of novel catalysts. In this application, a novel ferrous core-shell particle (Fe@SiO2) is proposed to be developed to catalyze the reaction. The novel synthetic route, preparing this nano-composite catalyst from C-template will be carried out: ferrous core encapsulated with Si/C shell will be prepared from chemical vapor deposition and then C-template will be removed to form mesopores in SiO2 shell. This route breaks such catalysts traditionally prepared via wet-chemical route. For investgating its growth mechanism, the synthetic conditions, such as resources concentrations, composite and reactive tempature, will be modified and their morphologic changes will be characterized to find out mixture, heat transportion and nucleation mechanism in order to modify the morphology of the novel catalyst, such as thickness, mesopore volume and mesopore distribution of shells, and diameter and crystal type of cores. The composite of the synthesis gas touching the core will be modified and dispersivity of catalysts will be improved to avoid their sintering. Thus, the catalyst with high catalysis and stability will be obtained.alyzed to form lower olefins. Thus designation and fabrication of novel catalysts with high selectivity,

英文关键词: Core-shell structure;Fabrication of catalyst;Chemical vapor deposition;Synthesis of lower olefins;Electrochemical applications

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
18+阅读 · 2020年11月6日
学习一个宫崎骏画风的图像风格转换GAN
AI科技评论
18+阅读 · 2020年3月13日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年8月8日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
18+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员