项目名称: 基于再生能量的车辆电液动力制动系统设计理论与方法

项目编号: No.51275053

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 林慕义

作者单位: 北京信息科技大学

项目金额: 80万元

中文摘要: 电液动力制动在保证现代工程车辆节能、环保、高效安全行驶方面更具优势。基于液压混合动力再生能量的动力调节系统可有效解决制约动力制动等有源控制先进技术发展所急需的动力问题,但由此加剧了车辆各子系统间能量传递的复杂程度。为实现在多系统耦合与复杂行驶作业条件下电液动力制动系统的设计与协调控制,提出基于再生能量的电液动力制动系统动态设计新理论与新方法。结合理论分析与实验验证,重点研究车辆有源系统与再生能量存储系统间的动力调节控制机理,并导出相关设计准则;分析掌握实现整车制动效能稳定、能量高效回收与分配的多系统动力协调控制原理与规律,探讨有源系统的集成设计与协同优化方法;提出再生制动、动力调节和有源系统间的节能控制方法与策略,实现各系统间的高效耦合。项目研究成果对再生能量的多系统应用控制研究、节能型电液动力制动系统研制具有重要的理论与实际意义。

中文关键词: 电液动力制动;动力调节;再生能量;耦合;混合动力

英文摘要: There are quite some advantages of electro-hydraulic brake on present-day construction vehicles for the purposes of energy conservation, environment friendliness and safe and efficient operation. The power adjusting system of regenerative energy from hydraulic hybrid power can offer an effective solution, which is essential in the development of this technology, to the power supply problems of restricting power brake and other active control technology. This is due to the fact that this system has increased the complexity of the energy transmission among the sub-systems within the vehicle. This new dynamic designing theory and method for electro-hydraulic brake system based on regenerative energy has been put forward for the design and adjustable control of electro-hydraulic power brake system in the condition of multi-system coupling or difficult vehicle operation. With theoretical analysis and experiment verification, the power adjustment and control mechanism between the active systems of vehicle and storage system of regenerative energy has been made a detailed study of, and as a result, the related design rules have been worked out. The multi-system power adjustment and control principle and law are analyzed and grasped for the stability of whole vehicle braking efficiency, effective recollection and alloc

英文关键词: electro-hydraulic brake;power adjusting;energy regeneration;coupling;hybrid

成为VIP会员查看完整内容
1

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
86+阅读 · 2022年4月17日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
18+阅读 · 2021年4月3日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
增程式理想ONE涨超一万,合理吗?
36氪
0+阅读 · 2022年3月24日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
60+阅读 · 2020年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2019年6月25日
小贴士
相关主题
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
86+阅读 · 2022年4月17日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
27+阅读 · 2021年9月17日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
18+阅读 · 2021年4月3日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员