项目名称: 导电聚合物微纳米结构阳极与微生物高效胞外电子传递机制

项目编号: No.51273008

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 朱英

作者单位: 北京航空航天大学

项目金额: 80万元

中文摘要: 能源短缺和环境污染已成为国际社会关注的焦点问题。微生物燃料电池(MFC)具有产生电能和处理污水的双重功能,已成为国内外能源和环境等领域的研究热点。MFC的阳极具有负载微生物和传递电子的双重功能,因此阳极材料对MFC性能起着重要作用。但是,微生物与阳极之间低效的胞外电子传递,制约了MFC推广应用。前期研究中,我们发现聚苯胺阵列纳米线阳极提高了微生物的产电效率,但是它与微生物之间胞外电子传递机制却不清楚,也未见文献报道。 本申请课题拟开展导电聚合物微纳米阳极与微生物高效胞外电子传递及其机理研究,研究重点是:设计和制备与微生物结构和性能相匹配的导电聚合物微纳米阳极;研究导电聚合物的微纳米结构和性能对微生物胞外电子传递效率的影响,及其胞外电子传递机制。本课题的科学意义在于利用导电聚合物独特的物化性能和纳米效应协同改善微生物电子传递,揭示微生物胞外电子传递机制,将对开发高效MFC具有重要的应用价值。

中文关键词: 导电聚合物;燃料电池;胞外电子传递;电化学催化;氧还原

英文摘要: The energy shortage and environmental pollution are two crucial topics in modern international society. Microbial fuel cells (MFCs) has the dual function of power generation and wastewater treatment, and has promising applications in both developing novel energy conversion system and environment management. The MFC anodes, where microorganisms are generally cultured and hence electrons are collected, play a crucial role in determining the MFCs performance. However, poor extracellular electron transfer efficiency between anode and microorganisms constrains the MFC's power output, which is a main bottleneck for practical applications of MFCs. In prior research, we found that the anode of the aligned polyaniline nanorods can dramatically improve in efficient electricity production, yet the mechanism remains unsolved. Moreover, there is no report on mechanism of extracellular electron transfer between conducting polymers and microorganisms. Here, the extracellular electron transfer between microorganisms and micro/nnaostructured conducting polymer anodes will be studied in detail. First, the research will focused on the designing and preparation of various conducting polymer material with suitable micro-structure and special physicochemical properties. And then the effect of nanostructures and physicochemical prop

英文关键词: Conducting polymers;Fuel cell;Extracellular electron transfer;Electrochemical catalysis;Oxygen reduction reaction

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
【Nature-MI】可解释人工智能的药物发现
专知会员服务
44+阅读 · 2020年11月1日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
图神经网络推理,27页ppt精炼讲解
专知会员服务
115+阅读 · 2020年4月24日
孙悟空,登上Nature!
CVer
0+阅读 · 2021年12月29日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
56+阅读 · 2021年5月3日
小贴士
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
【Nature-MI】可解释人工智能的药物发现
专知会员服务
44+阅读 · 2020年11月1日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
图神经网络推理,27页ppt精炼讲解
专知会员服务
115+阅读 · 2020年4月24日
相关资讯
孙悟空,登上Nature!
CVer
0+阅读 · 2021年12月29日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员