项目名称: 代码度量的缺陷预测能力的全面元分析

项目编号: No.61300051

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 卢红敏

作者单位: 南京大学

项目金额: 23万元

中文摘要: 本课题以大量工业级规模和复杂性的面向对象软件系统为实验对象,利用元分析技术对上百种主流代码度量的缺陷预测能力展开全面的实证研究。对每一个代码度量,首先在单个软件系统上对它与缺陷之间的关系进行预测性能评价,然后利用统计的随机效应模型元分析方法综合单个系统上所得的结果,不仅考虑单个系统内部模块特性上的差异,而且同时考虑多个系统间模块特性上的差异,以得到尽可能通用化的结论。本课题的主要研究内容包括:(1)代码度量的基准值分析;(2)代码度量与缺陷的相关性元分析;(3)代码度量的缺陷模块分类能力元分析;(4)代码度量的缺陷模块排序能力元分析;(5)代码度量的缺陷预测阈值元分析;(6)代码度量和过程度量的缺陷预测能力比较元分析。本课题不仅可以使得人们深入理解代码度量的特性,而且可以给开发者使用代码度量理解、控制和改进软件质量提供科学的基础,从而推动它们从学术界的研究走向工业界软件开发中的实际应用。

中文关键词: 代码度量;缺陷;预测;元分析;

英文摘要: Based on a large number of industrial-size/complexity object-oriented systems, this project aims to use statistical meta-analysis techniques to perform a comprehensive investigation on the ability of popular code metrics to predict fault-proneness. For each code metric, we first analyze the relationship between it and fault-proneness. Then, we employ a statistical random-effect model to combine the results from individual object-oriented systems. This random-effect model takes into account not only the difference among the modules within a single system but also the difference among the modules within different systems. Consequently, the conclusions drawn from the random-effect model can be generalized to other systems. The main research contents of this project include: (1) meta-analysis for baseline values of code metrics; (2) meta-analysis for the associations of code metrics with fault-proneness; (3) meta-analysis for the ability of code metrics to classify fault-prone modules; (4) meta-analysis for the ability of code metrics to rank fault-prone modules; (5) meta-analysis for the threshold of code metrics to distinguish between fault-prone and not fault-prone modules; and (6) meta-analysis for the prediction ability comparison of code metrics and process metrics. This project will not only enable us to bett

英文关键词: Code metrics;Defect;Prediction;Meta-analysis;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
24+阅读 · 2021年7月22日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
77+阅读 · 2021年5月30日
【WWW2021】用优化框架解释和统一图神经网络
专知会员服务
44+阅读 · 2021年2月1日
专知会员服务
95+阅读 · 2020年12月8日
Go 如何减少供应链攻击?
AI前线
0+阅读 · 2022年4月13日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
复制粘贴代码,很可能会带来灾难性的后果
AI前线
0+阅读 · 2022年3月26日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
程序开发人员缺乏经验的7种表现
AI前线
0+阅读 · 2021年12月23日
R-Drop:填补Dropout缺陷,简单又有效的正则方法
微软研究院AI头条
0+阅读 · 2021年7月21日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Model Reduction via Dynamic Mode Decomposition
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
101+阅读 · 2020年3月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
小贴士
相关资讯
Go 如何减少供应链攻击?
AI前线
0+阅读 · 2022年4月13日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
复制粘贴代码,很可能会带来灾难性的后果
AI前线
0+阅读 · 2022年3月26日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
程序开发人员缺乏经验的7种表现
AI前线
0+阅读 · 2021年12月23日
R-Drop:填补Dropout缺陷,简单又有效的正则方法
微软研究院AI头条
0+阅读 · 2021年7月21日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
Model Reduction via Dynamic Mode Decomposition
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
101+阅读 · 2020年3月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
微信扫码咨询专知VIP会员