项目名称: 全局时滞引起的模式生成及其模式选择研究
项目编号: No.11201406
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 田灿荣
作者单位: 盐城工学院
项目金额: 23万元
中文摘要: Turing模式普遍存在于物理、化学、生物等领域的非线性动力系统。本项目研究具有全局时滞的种群动力学模型,证明在某些参数条件下全局时滞能够导致Turing模式生成,从而解释封闭生态系统中种群空间分布不均匀的现象。首先分析正平衡点的局部稳定性和全局稳定性,给出Turing模式的色散关系和Turing参数空间;然后利用Hopf分支理论以及拓扑度方法,研究相应模型的稳态问题,即椭圆方程组非常数正解的存在性;最后应用有限体积数值计算方法,模拟出不同模式(比如条纹或者圆点)的斑图,研究全局时滞对于模式选择的影响,并利用大量的计算机数值模拟实验,研究Turing模式关于初始值的稳定性。每次实验对初始值取不同振幅,找到Turing模式发生时的振幅临界值。这些问题属于当前生物数学和偏微分方程的前沿研究领域,展开对它们的研究有助于加深理解和认识自然界中的非线性现象。
中文关键词: 图灵斑图;全局时滞;种群动力学;模式选择;
英文摘要: Turing pattern is a kind of popular phenomenon arising from the nonlinear dynamics in the fields of Physics, Chemistry and Biology. In this project the global delay is introduced to the population models. We show that under some parameter conditions the global delays induce the Turing patterns, which explains the inhomogeneous density of the species in some closed ecosystem. Firstly, by analysizing both local and global stability of the positive equilibrium, we give the disperse relation and the Turing parameter space. Secondly, by using a Hopf bifurcation and Leray-Schauder degree theory, we prove the existence of the non-constant positive solution for the corresponding steady state problem, which is reduced to an elliptic equations. Finally, by employing the numerical simulations from the finite volume method, we illustrate all types of patterns, such as striped pattern and spotted pattern, to study both the role of the global delay on the seletion of the type of the pattern and the stability of the Turing pattern. We aim to find out the critial value of the amplitude for the initial data. The study of the above problems, which function as the frontier for the fields of Biomathematics and PDE, give a deep insight into the nonlinear phenomenon in the nature.
英文关键词: Turing pattern;Global time delay;Population dynamics;Pattern selection;