项目名称: 凝聚相复杂体系分子反应动力学中的溶剂化过程研究
项目编号: No.21333012
项目类型: 重点项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 夏安东
作者单位: 中国科学院化学研究所
项目金额: 310万元
中文摘要: 本“溶剂化科学”项目将基于我们过去在具有推拉电子基团的超支化分子溶剂化、离子液体的溶剂化、和溶剂水分子对DNA光损伤反应路径的调控等研究成果的基础上,利用实验室已经发展和将要发展的多种超快时间分辨光谱技术,以非均匀的受限分子结构体系(比如具有推拉电子基团的有机功能超支化分子体系、蛋白质和DNA等)体系为研究对象,系统研究非均匀体系中溶剂分子(有机溶剂和水)的溶剂化行为(包括溶剂化光物理过程和溶剂化光化学反应过程)的动力学。我们期望为“溶剂化科学”在分子水平上对复杂分子体系与溶剂分子的相互作用机制进行探讨,研究溶剂分子对激发态衰变过程的竞争、化学反应的调控、量子过程的响应和反馈方式,建立相关溶剂化反应动力学模型,赋予表观性的溶剂化动力学信息更多的原理性内涵。
中文关键词: 分子反应动力学;溶剂化;激发态;;电荷转移;凝聚相
英文摘要: The aim of this project is to develop methods and technologies to investigate molecular reaction, and biological processes in the excited states in the liquid phase, where the solvent molecules are taken as active species in solvent-mediated and solvent-controlled chemical reaction processes. We will develope advanced ultrafast spectroscopic methods combined with quantum chemical calculations to probe, describe, and model the structure, dynamics, and kinetics of complex solvation phenomena at the molecular level in confined molecule systems from solvation viewpoints, and provide a unifying platform to investigate the complex solvent processes in macromolecules, DNA and proteins..To gain deeper insights into this research, the solvation studied in this project includes two parts, one is physical solvation, and other is solvation chemistry in which the solvation induced chemical reaction was involved. In solvation physics, we will focus on the excited state dynamics of macromolecules in organic solvents to see how the power-law solvation occurred in such confined system. For solvation induced chemical reaction, we will mainly focus on the protein/water or DNA/water interactions. Connecting solvation dynamics with confined molecule systems will open the way to achieving breakthroughs from understanding solvation dynamics, to see how the solvation influences the thermodynamics, the kinetics, and how it affects transition states and finally the product selectivity in liquid phase reactions.
英文关键词: molecular reaction dynamics;solvation;excited state;charge transfer;condensed phase