项目名称: 飞秒激光诱导亚波长与深亚波长纳米周期结构的超快动力学

项目编号: No.11474097

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 贾天卿

作者单位: 华东师范大学

项目金额: 90万元

中文摘要: 飞秒激光在金属、半导体、介质材料中诱导纳米周期条纹结构的机制一直是一个富有挑战性的热点课题。如何研究飞秒激光照射下电子的激发与能量周期沉积等超快动力学是突破这一难题的关键所在。激光诱导亚波长、深亚波长周期条纹在微纳光学元器件制造等方面的应用也获得了迅速发展。 本项目计划创新发展同时具有高时间分辨、高空间分辨、高灵敏度的超快成像实验系统,研究飞秒激光能量周期沉积与周期条纹形成的超快动力学。建立飞秒激光与纳米结构的耦合动力学模型,研究飞秒激光照射下电子的激发、等离子体的形成、等离子体波与激光的干涉等微观超快过程。理论和实验相结合,揭示飞秒激光诱导纳米周期结构的物理机制。发展飞秒激光纳米加工的新原理、新方法,制备刻线线宽小于50纳米的结构,探索这些结构在纳米光学元器件的应用。

中文关键词: 飞秒激光;泵浦探测;纳米周期结构;超快过程

英文摘要: Subwavelength and deep subwavelength periodic ripples have been intensely studied in metals, semiconductors, and dielectrics under the irradiation of femtosecond laser pulses. The formation mechanisms is an interesting and puzzling problem. The key point is how to study the ultrafast dynamics of electron excitation and laser energy deposition under fs laser irradiation. In this project, we will develop a bump-probe experimental system with 50 fs temporal resolution, 200 nm spatial resolution, and high sensitivity by using a 50 fs, 800 nm laser and OPA system, and study the formation dynamics of subwavelength and deep subwavelength periodic ripples in metal, semiconductor, dielectrics, and polymers, including electrons excitation and periodic distribution. The coupling model of fs laser and nanostructures will be resolved by quantum perturbation method and finite element method. Another goal is to study the fabrication of 2D and 3D nanostructures with resolution less than 50 nm, and their applications in nano-photonic elements.

英文关键词: femtosecond laser;bump-probe method;periodic nanoripples;ultrafast dynamics

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
229+阅读 · 2021年6月3日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员