项目名称: 仿复眼视觉系统光谱-偏振敏感机制的水下目标检测方法

项目编号: No.61501173

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 陈哲

作者单位: 河海大学

项目金额: 20万元

中文摘要: 在现代水下工程作业和运行维护中,对于水下构筑物缺陷及损毁探测、高边坡管涌及工程病害防护等任务均迫切需要水下成像探测技术的支持。然而目前现有方法仅能部分实现静水流况和清洁水体中的目标检测。而在水工作业和水下探测的高浑浊流动水体条件下,由于水下光学环境的复杂性,目标信息呈模糊、畸变和不确定等特性,使得精确表征并检测目标属性及特征具有很大难度,导致水下目标检测正确率过低。受水下生物螳螂虾复眼视觉系统光谱-偏振敏感机制的启发,针对上述水下复杂光学环境,拟提出仿螳螂虾复眼视觉系统特定光谱段偏振成像与虚拟视像信息融合处理联合的水下目标检测方法;探索并转化复眼系统光谱-偏振敏感性和追踪目标的优势,尤其重点研究适宜水下复杂光学环境下基于仿复眼机制的目标表征建模方法,如何克服难以准确提取和检测目标特征的本质性困难。通过本项研究,拟在水下偏振成像及目标检测等关键理论方法上取得创新性突破,为实际应用打下基础。

中文关键词: 水下成像检测;复杂光学环境;偏振信息获取;仿生信息处理

英文摘要: Underwater imaging detection technology is very important for the underwater engineering and operating maintenance, which underlies the tasks as the underwater structures defect detection, high slope piping and turbulence flow protection. The up-to-date methods only have the ability to cater for the static and clear water. However, in the high-turbid and complicated underwater engineering environments it is critical to represent and detect objects, due to the fuzzy, distorted and nondeterministic object information. This nature results in the low object detection accuracy. Inspired by the visual system of the compound eye in mantis shrimps, the spectrum-polarization sensitivity mechanism is imitated to propose a new bionic underwater object detection method. This method is established by combining the bionic spectral-specialized polarization imaging and virtual view information multilevel fusion processing methanisms, it is able to be applied in the high-turbid flowing waters. The advantage of the spectrum-polarization sensitivity in the visual system of the mantis shrimps is transformed and explored. The research specially focuses on the bionic compound eye establishment method to overcome the intrinsic difficulties in underwater object information acquisition and modeling. A novel breakthrough would be made for the critical technology in underwater polarization imaging and detecting, establishing the basement for applications.

英文关键词: underwater imaging detection;complicated optical environment;polarization information acquisition;bionic information processing

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
91+阅读 · 2021年8月29日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
103+阅读 · 2020年11月27日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
YOLO 实现吸烟行为监测
极市平台
1+阅读 · 2021年10月30日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
生物特征识别学科发展报告
专知
1+阅读 · 2021年3月18日
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
91+阅读 · 2021年8月29日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
103+阅读 · 2020年11月27日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
相关资讯
YOLO 实现吸烟行为监测
极市平台
1+阅读 · 2021年10月30日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
生物特征识别学科发展报告
专知
1+阅读 · 2021年3月18日
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员