项目名称: 删失数据超高维共线性模型的变量选择

项目编号: No.11726616

项目类型: 专项基金项目

立项/批准年度: 2018

项目学科: 数理科学和化学

项目作者: 董莹

作者单位: 大连民族大学

项目金额: 10万元

中文摘要: 超高维数据的降维是当今统计学研究的前沿课题。本项目拟研究带有删失数据的超高维统计模型的变量选择问题,尤其是超高维协变量之间具有高度相关关系(即共线性关系)的变量选择问题。尽管对删失数据的变量选择已有一些研究成果,但对于区间删失数据模型的变量选择的研究尚少。因此,为了避免超高维数据带来的共线性问题的困扰,本项目拟对带区间删失数据的广义线性模型提出推广的组合惩罚,构造新的惩罚似然函数,发展新的变量筛选方法。在超高维框架下发展新的变量筛选方法以实现充分降维,探索合适的算法,将理论成果应用于实际数据分析。其研究可以丰富惩罚类变量选择的方法体系,也为生存数据分析领域的应用提供理论基础。

中文关键词: 删失数据;共线性模型;变量选择;超高维模型;Oracle性质

英文摘要: Dimensionality reduction of high-dimensional data is a frontier topic nowadays. This project aims to solve the variable selection in ultra-high dimensional models with censored data, especially for the collinearity models. Although there was much literature about censored data, there was no systematic theoretical investigation of simultaneous variable selection and coefficients estimation in the continuous generalized linear model with current status data. The existence of high correlation among variables in high-dimensional data can cause a serious problem of collinearity, therefore the main focus of this study is to resolve this issue. We propose a new combined-penalization which mixed by a nonconcave penalized function and the ridge. Inspired by Sure Independence Screening(SIS) method, we explore the appropriate algorithm and explain the corresponding data in the reality. This research can enrich the variable selection method system of penalization, as well as provide theoretical basis for the application in the area of survival analysis.

英文关键词: Censored data;Collinearity model;Variable selection;Ultra-high dimensional model;Oracle property

成为VIP会员查看完整内容
0

相关内容

【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
36+阅读 · 2021年6月6日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
19+阅读 · 2020年3月29日
数据出现波动不要慌,手把手教你搭建数据异常监控体系
人人都是产品经理
1+阅读 · 2021年12月20日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
从模型到应用,一文读懂因子分解机
AI100
10+阅读 · 2019年9月6日
数据分析师应该知道的16种回归方法:负二项回归
数萃大数据
74+阅读 · 2018年9月16日
数据分析师应该知道的16种回归技术:分位数回归
数萃大数据
29+阅读 · 2018年8月8日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年2月19日
小贴士
相关主题
相关VIP内容
【干货书】概率,统计与数据,513页pdf
专知会员服务
136+阅读 · 2021年11月27日
【干货书】R语言探索性数据分析,218页pdf
专知会员服务
61+阅读 · 2021年9月14日
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
36+阅读 · 2021年6月6日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
19+阅读 · 2020年3月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员