项目名称: 机场危险品检测的光声光谱遥测原理研究

项目编号: No.U1233116

项目类型: 联合基金项目

立项/批准年度: 2013

项目学科: 电子学与信息系统

项目作者: 贾书海

作者单位: 西安交通大学

项目金额: 38万元

中文摘要: 针对加强机场安全检测的国家需求,研究一种用于机场爆炸物等危险品“远距离遥测”的光声光谱新原理。采用微电子机械系统(MEMS)技术加工微石英音叉,利用其品质因子Q很高的特性,通过微音叉共振来探测光声信号;利用激光来检测微音叉振幅,以及利用被测物的反射光聚焦于微音叉上来增加光功率密度等方法, 使测量灵敏度比传统光声光谱技术提高3-5个数量级,并具有很强的抗环境干扰能力,可以实现远距离(2-5米)、开放环境下的光声光谱测量。项目将探明这种光声光谱遥测新原理的影响因素、设计准则等,研制原理样机,为实际应用打下坚实基础。本项目方案检测时不需要样品制备、预浓缩等步骤,具有远距离遥测、灵敏度高、安全、非侵入、成本低、检测时间短等优点,为机场微量爆炸物和液体化学危险品检测提供一种全新的检测原理,对进一步提高民航安全具有重要的意义。项目符合“民航联合研究基金”指南的中“安全检查新理论与方法”的要求。

中文关键词: 光声光谱;激光;危险品检测;机场;音叉

英文摘要: A fundamental research of a novel method of remote detection of explosive and chemical hazardous materials at airport based on photoacoustic spectroscopy is proposed, in order to meet the need of national interest of improving the airport safety. The micro quartz tuning fork made of MEMS technology provides high quality factor Q. The acoustic signals can be detected through the resonance of the fork to identify the presence of the hazardous elements. The vibration amplitude of the micro tuning fork is inspected by the reflection laser method. The reflected light from the testing object is focused on the tiny tuning fork, which increases the light power density. Using above methods, the measuring sensitivity can be improved by 3-5 orders of magnitude than that of existing methods. These methods also improve anti-noise performance against environmental disturbance. The measurement range is around 2-5 meters in an opening environment. In this project we will evaluate the possible influencing factors and the design criterion of this new remote detection principle based on photoacoustic spectroscopy. A principle prototype will be built in order to lay a solid foundation for further practical application. This project has no need of sample pre-concentration, and has many advantages such as remote sensing, extreme high

英文关键词: Photoacoustic spectroscopy;Laser;Hazard check;Airport;Quartz tuning fork

成为VIP会员查看完整内容
0

相关内容

【武器简介】12页PPT详解高超声速武器与英国发展情况
专知会员服务
56+阅读 · 2022年3月14日
专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
27+阅读 · 2021年1月29日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
【武器简介】12页PPT详解高超声速武器与英国发展情况
专知会员服务
56+阅读 · 2022年3月14日
专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
27+阅读 · 2021年1月29日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员