项目名称: 基于低阶快速平移倾斜补偿镜的地基望远镜的实时共相的高分辨率恢复方法的研究
项目编号: No.11473050
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 天文学、地球科学
项目作者: 张勇
作者单位: 中国科学院国家天文台南京天文光学技术研究所
项目金额: 95万元
中文摘要: 随着天文学对于未知世界的进一步探索的迫切要求,包括美国三十米望远镜、欧洲极大望远镜、美国巨型麦哲伦望远镜、中国的未来巨型望远镜和中国巨型太阳望远镜在内的多个极大望远镜计划应运而生,并计划在近红外实现共相获得衍射极限性能。而传统望远镜运行中也因为地面视宁度问题,性能受限于大气视宁度极限。通过基于快速平移倾斜低级自适应补偿镜,针对传统小望远镜和类似巨型麦哲伦望远镜的地基地基多镜面望远镜,对部分离散瞳孔(大气湍流尺度尺度r0)的优化空间覆盖选择,开展子瞳孔间相互平移和倾斜的实时检测和校正,实时实现离散瞳孔的共相校正和维持,实时改善或恢复望远镜的空间和时间分辨率性能。项目将依托室外拼接镜面主动光学试验系统进行针对性地方案应用研究。本项目的成功开展将为我国常规望远镜的性能升级改善和多镜面望远镜的建造提供亟需的技术储备。
中文关键词: 主动光学;快速平移倾斜镜;光学综合孔径;大气视宁度;高分辨率成像
英文摘要: With the urgent requirements of scientific exploring the unknown world for astronomy, many large telescopes, including the Thirty Meter Telescope, European Extremely Large Telescope, The Giant Magellan Telescope, the Chinese Future Giant Telescope and the Chinese Giant Solar Telescope, are proposed and expected to achieve the diffraction limited performance in the near infrared or even shorter waveband. However traditional ground-based telescopes are operated with the limitation of atmopheric seeing problem. By means of the fast piston and tip/tilt mirrors, for traditional telescopes and multiple mirror telescope like Giant Magellan Telescope, this research will choose sub-pupils within the size of atmospheric seeing disk r0, optimize them to have good spatial frequency coverage in the primay aperture space, carry out the real-time test and correction of relative piston and tip/tilt among sub-pupils, realize the real-time co-phasing correction and maintenance of all decrete sub-pupils and finally improve or restore the spatial and tempal high resolution performance of telescopes. This research will also adapt these technologies to the Segmented Mirror Experiment System in NIAOT, CAS for experimental demonstration. It is forseen that the proposed research will definely contribute to the improvement and upgradation of the traditional telelscopes and constructions of multiple mirror telescope.
英文关键词: Active optics;Fast piston tip/tilt mirror;Optical aperture synthesis;Atmospheric seeing;High resolution imaging