Tremendous progress in deep learning over the last years has led towards a future with autonomous vehicles on our roads. Nevertheless, the performance of their perception systems is strongly dependent on the quality of the utilized training data. As these usually only cover a fraction of all object classes an autonomous driving system will face, such systems struggle with handling the unexpected. In order to safely operate on public roads, the identification of objects from unknown classes remains a crucial task. In this paper, we propose a novel pipeline to detect unknown objects. Instead of focusing on a single sensor modality, we make use of lidar and camera data by combining state-of-the art detection models in a sequential manner. We evaluate our approach on the Waymo Open Perception Dataset and point out current research gaps in anomaly detection.
翻译:过去几年在深层学习方面所取得的巨大进展导致未来在公路上拥有自治车辆,然而,它们的感知系统的运作在很大程度上取决于使用的培训数据的质量。由于这些系统通常只覆盖所有目标类别的一小部分,自主驾驶系统将面临困难,因此这些系统将难以应付意外情况。为了安全地在公路上运作,查明未知类别的物体仍是一项关键任务。在本文件中,我们提议建立一个探测未知物体的新管道。我们不注重单一的传感器模式,而是利用Lidar和相机数据,以相继方式将最新技术探测模型结合起来。我们评估了我们在Waymo Open Pervition数据集上的做法,并指出了目前异常探测方面的研究差距。