项目名称: 马尔科夫跳跃正系统的稳定分析与控制综合
项目编号: No.61573188
项目类型: 面上项目
立项/批准年度: 2016
项目学科: 自动化技术、计算机技术
项目作者: 杜宝珠
作者单位: 南京理工大学
项目金额: 16万元
中文摘要: 本项目以马尔科夫跳跃正系统为研究对象,深入研究其稳定性,性能控制综合等理论问题。由于子系统切换服从随机马尔科夫过程的多模态正系统控制研究成果目前寥寥无几,分析马尔科夫跳跃正系统的稳定性判定依据,以及设计固定阶控制器保证系统的所有信号在实施控制后仍停留在指定非负区域或非负锥体中具有重要的理论研究意义。本项目研究工作集中在基于线性Lyapunov稳定性理论和非负矩阵理论,推导马尔科夫跳跃正系统在“正”意义下的随机渐近稳定性判据, 同时具有“正”特性以及满足预设的Lp增益性能要求。最后,尝试变非负区域为特定的不变锥体,将新的研究方法和思路应用到锥保系统的不变集稳定分析中。本项目的研究成果将丰富马尔科夫跳跃正系统的控制理论,并为其实际应用提供进一步的理论支持。
中文关键词: 马尔科夫跳跃系统;正系统;稳定性;鲁棒控制;
英文摘要: In this project, the performance-based control synthesis problems for Markovian jump positive systems with constant coefficients and specific exogenous disturbance will be tackled. In the linear Lyapunov framework, some fundamental results on stability analysis and input-output characteristics of Markovian jump positive systems will be addressed. Analysis will be carried out based on the system Lp gains so as to provide the corresponding equivalent analytical characterizations on the system performances. Using the classical theoretical tools, computational algorithms in the form of linear or semi-definite programming will be constructed for solving the design problems. One of the key objectives of the project is also to generalize the gain-constrained synthesis to cone-preserving systems, subject to inputs whose (1, 1)-norm, (∞ , 1)-norm or (∞ , ∞)-norm is bounded by a prescribed constant. The proposed work will not only enrich current system analysis of Markovian jump positive systems, but also considerably narrow the gaps between theories and applications, and offer higher performance in control system implementations.
英文关键词: Markovian jump systems;positive systems;stability;robust control;