项目名称: 甚低含量功能化石墨烯“离位”强韧自愈合环氧先进复合材料

项目编号: No.51273221

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 袁彦超

作者单位: 华南理工大学

项目金额: 80万元

中文摘要: 由外物冲击和疲劳所引发的基体开裂、层间分层等损伤破坏是造成聚合物基复合材料失效的主要模式。青年基金项目为此开展了复合材料疲劳损伤自愈合研究,获得一种能够愈合疲劳破坏的新型材料,突破以往无法原位快速愈合疲劳裂纹的难题,在ACS等期刊发表研究论文16篇,申请专利3件。但这种被动修复方式无法有效地从源头上阻止和抑制基体裂纹的萌生和扩展,是一种治‘标’不治‘本’的解决方案。本项目拟在此基础上,进一步开展自愈合先进复合材料制备及抵抗冲击和疲劳等损伤破坏方面的研究,引入“离位”技术,采用甚低含量的对高分子材料具有显著强韧效果的功能化石墨烯增强、增韧复合材料层间基体,充分发挥功能化石墨烯与碳纤维之间对基体的协同强韧作用以及功能化石墨烯强韧功能与微胶囊自愈合功能之间的协同作用,使复合材料既能够从源头上阻止或抑制裂纹的萌生和扩展、又能够及时有效地愈合产生的裂纹损伤破坏,达到对裂纹损伤‘标’‘本’兼治的目的。

中文关键词: 先进复合材料;功能化石墨烯;“离位”强韧;自愈合;综合性能

英文摘要: Damages of matrix crack and delamination caused by foreign object impact and fatigue load during preparation, processing, use and maintenance are the main failure mode of polymer matrix composites. In the Young Scholar Project (No. 50903095), self-healing of fatigue damages in composites was studied, and a new material capable of healing fatigue crack damage automatically was achieved. It is a breakthrough in rapid in-situ healing of fatigue cracks, which was an unsolved difficulty in the past. Sixteen relevant research papers have been published in some journals such as ACS Applied Materials & Interfaces, and it has applied for three patents. However, this passive repair mode cannot effectively prevent or restrain the matrix cracks’ initiation and propagation from the root. So, it is only a kind of solution addressing from symptoms but not root causes. On the basis, the project plans to further develop the preparation research of self-healing advanced composite materials and their resistance to impact and fatigue damage. Ex-situ technology proposed by Professor Xiaosu Yi will be introduced, and very low content of surface functionalized graphene, which possesses outstanding strengthening and toughening effects on polymer materials, will be selected to improve the interlaminar matrix of the composites. The aim i

英文关键词: Advanced composite materials;functionalized graphene;ex-situ strengthen and toughen;self-healing;comprehensive performance

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
重磅!中国工程院发布《2021全球工程前沿》,247页pdf
专知会员服务
116+阅读 · 2021年12月14日
轻量化神经网络卷积设计研究进展
专知会员服务
55+阅读 · 2021年10月24日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
全新iPhone SE发布:搭载A15芯片 3499元起售
威锋网
0+阅读 · 2022年3月8日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员