项目名称: 复杂空间和时空数据的统计模型研究
项目编号: No.11301536
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 褚挺进
作者单位: 中国人民大学
项目金额: 22万元
中文摘要: 近年来,越来越多的空间数据和时空数据被收集。如何建立合适的空间统计模型和时空统计模型分析这些数据,为其他学科的发展和解决当前热点问题服务,是一个值得研究的课题。借鉴国内外最新的研究成果,本项目着重研究一些较复杂的空间数据和时空数据的统计建模和估计问题。研究将分为三个部分: 不同来源的数据的建模和估计;空间纵向数据的建模和估计;上述两种复杂数据的计算问题。在第一部分中,我们将区分研究目标本身的空间随机因素和测量仪器产生的误差,并将这个区分和常用的空间模型和时空模型联系起来,改进已有的模型。在第二部分中,我们将引入常用的纵向数据的方法,即FPCA 方法,进行降维操作,在此基础上,针对空间纵向数据的特点,对数据的空间相关性进行估计。第三部分中,我们侧重于从选择合适的统计模型和采用并行计算两个方面来提高计算效率,节约计算时间。
中文关键词: 空间模型;时空模型;复杂数据;相关性估计;计算效率
英文摘要: In recent years, more and more spatial and spatial-temporal data sets are collected. To help the development of other scientific disciplines and address various social issues, it is important to develop proper spatial and spatial-temporal statistical models in order to analyze these data. Based on the recent development in spatial statistics and spatial-temporal statistics, both in China and abroad, we will focus on statistical modeling and estimation for complex spatial and spatial-temporal data sets in this project. The project is further divided into three parts: modeling and estimation for data collected from different sources; modeling and estimation for spatially correlated functional data; computational efficiency for these two types of data. In the first part, we will distinguish the different nature of underlining spatial correlation of research subjects and the measurement error. Furthermore, commonly used spatial and spatial-temporal models will be improved by combining this difference and model structure of these models. In the second part, functional data method, namely, FPCA (functional principal component analysis), are used for dimensional reduction. Moreover, we will develop a new model to take into account of the spatially correlated functional data. A new algorithm will also be proposed to imp
英文关键词: Spatial Model;Spatial-Temporal Model;Complex Data;Estimation of Correlation;Computational Efficiency