自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。计算能力的最新发展和大量语言数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本调查对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
152

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

【简介】自然语言处理(NLP)能够帮助智能型机器更好地理解人类的语言,实现基于语言的人机交流。目前随着计算能力的发展和大量语言数据的出现,推动了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域取得了显著的进步,数据驱动策略的应用已经非常的普遍。本综述对NLP领域中所应用的深度学习进行了分类和讨论。它涵盖了NLP的核心任务和应用领域,并对深度学习方法如何推进这些领域的发展进行了细致的描述。最后我们进一步分析和比较了不同的方法和目前最先进的模型。

原文连接:https://arxiv.org/abs/2003.01200

介绍

自然语言处理(NLP)是计算机科学的一个分支,能够为自然语言和计算机之间提高沟通的桥梁。它帮助机器理解、处理和分析人类语言。NLP通过深入地理解数据的上下文,使得数据变得更有意义,这反过来又促进了文本分析和数据挖掘。NLP通过人类的通信结构和通信模式来实现这一点。这篇综述涵盖了深度学习在NLP领域中所扮演的新角色以及各种应用。我们的研究主要集中在架构上,很少讨论具体的应用程序。另一方面,本文描述了将深度学习应用于NLP问题中时所面临的挑战、机遇以及效果评估方式。

章节目录

section 2: 在理论层面介绍了NLP和人工智能,并将深度学习视为解决现实问题的一种方法。

section 3:讨论理解NLP所必需的基本概念,包括各种表示法、模型框架和机器学习中的示例性问题。

section 4:总结了应用在NLP领域中的基准数据集。

section 5:重点介绍一些已经被证明在NLP任务中有显著效果的深度学习方法。

section 6:进行总结,同时解决了一些开放的问题和有希望改善的领域。

成为VIP会员查看完整内容
0
75

题目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。算力的最新发展和语言大数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本综述对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们并进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
58

题目: A Survey of Deep Learning Techniques for Neural Machine Translation

摘要: 近年来,随着深度学习技术的发展,自然语言处理(NLP)得到了很大的发展。在机器翻译领域,出现了一种新的方法——神经机器翻译(NMT),引起了学术界和工业界的广泛关注。然而,在过去的几年里提出的大量的研究,很少有人研究这一新技术趋势的发展过程。本文回顾了神经机器翻译的起源和主要发展历程,描述了神经机器翻译的重要分支,划分了不同的研究方向,并讨论了未来该领域的一些研究趋势。

成为VIP会员查看完整内容
0
73

题目: Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends

简介: 传统上,语音处理研究将设计人工工程声学特征(特征工程)的任务与设计有效的机器学习(ML)模型以做出预测和分类决策的任务分离为一个独立的问题。这种方法有两个主要缺点:首先,手工进行的特征工程很麻烦并且需要人类知识。其次,设计的功能可能不是最适合当前目标的。这引发了语音社区中采用表示表达学习技术的最新趋势,该趋势可以自动学习输入信号的中间表示,从而更好地适应手头的任务,从而提高性能。表示学习的重要性随着深度学习(DL)的发展而增加,在深度学习中,表示学习更有用,对人类知识的依赖性更低,这有助于分类,预测等任务。本文的主要贡献在于:通过将跨三个不同研究领域(包括自动语音识别(ASR),说话者识别(SR)和说话者情绪识别(SER))的分散研究汇总在一起,对语音表示学习的不同技术进行了最新和全面的调查。最近针对ASR,SR和SER进行了语音复习,但是,这些复习都没有集中于从语音中学习表示法,这是我们调查旨在弥补的差距。

成为VIP会员查看完整内容
0
20

在过去的几年里,自然语言处理领域由于深度学习模型的大量使用而得到了发展。这份综述提供了一个NLP领域的简要介绍和一个快速的深度学习架构和方法的概述。然后,筛选了大量最近的研究论文,并总结了大量相关的贡献。NLP研究领域除了计算语言学的一些应用外,还包括几个核心的语言处理问题。然后讨论了目前的技术水平,并对该领域今后的研究提出了建议。

成为VIP会员查看完整内容
0
156
小贴士
相关VIP内容
专知会员服务
57+阅读 · 2020年5月5日
专知会员服务
137+阅读 · 2020年4月26日
专知会员服务
75+阅读 · 2020年3月12日
机器翻译深度学习最新综述
专知会员服务
73+阅读 · 2020年2月20日
专知会员服务
210+阅读 · 2020年1月1日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
156+阅读 · 2019年10月12日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
54+阅读 · 2019年10月12日
相关资讯
2019->2020必看的十篇「深度学习领域综述」论文
极市平台
20+阅读 · 2020年1月2日
基于深度学习的NLP 32页最新进展综述,190篇参考文献
人工智能学家
22+阅读 · 2018年12月4日
从0到1,这篇深度学习综述送给你!
机器学习算法与Python学习
20+阅读 · 2018年6月13日
从语言学到深度学习NLP,一文概述自然语言处理
人工智能学家
11+阅读 · 2018年1月28日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
46+阅读 · 2020年7月2日
Marco Tulio Ribeiro,Tongshuang Wu,Carlos Guestrin,Sameer Singh
11+阅读 · 2020年5月8日
Xipeng Qiu,Tianxiang Sun,Yige Xu,Yunfan Shao,Ning Dai,Xuanjing Huang
91+阅读 · 2020年3月18日
Liang Chen,Jintang Li,Jiaying Peng,Tao Xie,Zengxu Cao,Kun Xu,Xiangnan He,Zibin Zheng
33+阅读 · 2020年3月10日
Aidan Hogan,Eva Blomqvist,Michael Cochez,Claudia d'Amato,Gerard de Melo,Claudio Gutierrez,José Emilio Labra Gayo,Sabrina Kirrane,Sebastian Neumaier,Axel Polleres,Roberto Navigli,Axel-Cyrille Ngonga Ngomo,Sabbir M. Rashid,Anisa Rula,Lukas Schmelzeisen,Juan Sequeda,Steffen Staab,Antoine Zimmermann
79+阅读 · 2020年3月4日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+阅读 · 2018年12月11日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Oluwatobi Olabiyi,Alan Salimov,Anish Khazane,Erik T. Mueller
4+阅读 · 2018年6月11日
K M Annervaz,Somnath Basu Roy Chowdhury,Ambedkar Dukkipati
5+阅读 · 2018年5月21日
Top