项目名称: 基于双面金属包覆波导谐振腔的双通道太赫兹滤波器的研究

项目编号: No.61205094

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 陈麟

作者单位: 上海理工大学

项目金额: 28万元

中文摘要: 由于具有带宽大、保密性好、光子能量小等优点,太赫兹无线通信技术在国家安全和军事等领域有着重要的应用。多通道滤波器是实现太赫兹波分复用无线通信技术的重要器件。目前,虽然有利用高Q值的谐振腔结构,如光子晶体波导、周期布拉格波导和金属光栅波导等实现多通道滤波的技术,但这些技术普遍存在制造工艺复杂和成本高的缺点。为了克服上述缺点,本项目拟在亚毫米尺度双面金属包覆波导研究的基础上,提出一种新型的双通道太赫兹滤波器。通过在谐振腔内部引入一缺陷结构(微腔),使得原来的谐振吸收峰发生类Rabi效应的模式分裂,从而获得太赫兹频段窄带双通道滤波的效果。这种双通道太赫兹滤波器具有以下优点:(1)亚毫米尺度双面金属包覆波导易实现单横模传输,可有效降低传输损耗;(2)波导的强约束电磁场效应,表现出高Q 值特性,是实现Rabi 分裂的理想谐振腔结构;(3)易制造加工,对工艺的误差要求较小,便于调谐,成本低廉。

中文关键词: 太赫兹滤波器;平行平板波导;模式分裂;电磁诱导透明;金属孔阵列

英文摘要: Terahertz wireless communication technology is actively developed for a variety of applications in security detector and military due to the advantages of broadband bandwidth, good confidentiality, lower photonic energy and no damage for humanbeing. Multi-channel terahertz filter plays the key role for the application of terahertz wavelength division multiplexing wireless communication. Previous multi-channel filter designs were based on high Q-factor cavities, such as photonic crystal, Bragg resonance structure and metal grating waveguide. However, these solutions are disadvantageous in cost and complexity of technology. To overcome these shortcomings, in this project we study a new double-channel narrowband terahertz filter based on our previous work about submillimeter metal parallel-plate waveguide. By inserting the defect (microcavity) in metal parallel-plate waveguide cavity system, the original resonance dip of metal parallel-plate waveguide cavity splits into two close resonance dips similar to Rabi-like splitting, achieving narrowband double-channel filtering effect in the terahertz range. Such double channel terahertz filter has the following advantages: (1) submillimeter metal parallel-plate waveguide is easy to realize single TE mode transmission, which can reduce the transmission loss effectively; (

英文关键词: Terahertz filter;parallel plate waveguide;Mode splitting;Electromagnetically induced transparency;Metal hole arrays

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【速览】IJCV 2021| 基于贝叶斯学习的紧凑1比特卷积神经网络(BONN)
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Invertible Mask Network for Face Privacy-Preserving
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【速览】IJCV 2021| 基于贝叶斯学习的紧凑1比特卷积神经网络(BONN)
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员