项目名称: 纳米成像技术在神经环路可塑性研究中的应用

项目编号: No.91232722

项目类型: 重大研究计划

立项/批准年度: 2013

项目学科: 神经系统疾病、精神疾病

项目作者: 毕国强

作者单位: 中国科学技术大学

项目金额: 120万元

中文摘要: 神经环路的可塑性变化是大脑记忆功能的物质基础。神经突触作为环路的关键功能节点,是可塑性变化以及记忆存储的基本单元,也是情感疾病研究的重要目标。过去几十年的分子生物学以及电生理学实验在突触的分子组成、可塑性的规则以及信号转导路径等方面取得了大量成果,但由于技术的局限对环路内突触蛋白分子的组织则停留在粗略的定性描述。超高分辨率光学显微、冷冻电镜等新技术的发展使我们能以前所未有的精度对功能环路中突触内部超微结构进行系统的定量解析,从而推动相关领域的新突破。本项目拟整合与发展随机光学重构显微、冷冻电镜三维断层重构等纳米成像技术在神经环路可塑性研究中的应用,以海马神经元环路中兴奋性突触群落为研究对象,优化样品制备、数据采集、统计分析处理等方法,解析环路中重要突触蛋白分子的超微定位及其在正常与应激条件下的可塑性变化,构建神经环路突触与可塑性的多层次图谱与数据库框架,探索揭示记忆与情感障碍机理的新途径。

中文关键词: 纳米成像技术;神经环路;突触;突触可塑性;

英文摘要: Plastic changes in neural circuits form the biological basis of memory functions in the brain. Neuronal synapses, as the key connectivity component of neural circuits, are the basic unit for neural plasticity and memory storage, and are important targets in studies of emotion and psychiatric disorders. Past decades have seen significant progress in molecular and electrophysiological studies on the molecular composition of synaptic proteins, as well as the dynamic rules and signaling mechanisms of synaptic plasticity. However, our present understanding of the physical organization of synaptic proteins is limited to very coarse qualitative descriptions. With the development of nano imaging technologies, such as super-resolution optical imaging and cryo-EM, it is now possible to dissect the ultra-structural organization inside synapses within functioning neural circuits at unprecedented resolution. Therefore, we believe the field is on the verge of a major breakthrough. We propose to integrate and improve stochastic optical reconstruction microscopy and cryo-electron tomography for the study of neural circuit plasticity. Using populations of excitatory synapses within circuits of hippocampal neurons, this project aims at optimizing and developing various techniques, including sample preparation, data collect

英文关键词: Nano-imaging;Neural circuits;Synapse;Synaptic plasticity;

成为VIP会员查看完整内容
0

相关内容

《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
14+阅读 · 2021年3月26日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
可浏览的人类大脑皮层 PB 量级重建
TensorFlow
1+阅读 · 2021年7月19日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年9月11日
小贴士
相关主题
相关VIP内容
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
14+阅读 · 2021年3月26日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
57+阅读 · 2022年1月5日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年9月11日
微信扫码咨询专知VIP会员