项目名称: 利用热探针烧结技术制备金属纳米结构的研究

项目编号: No.51271059

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 张开银

作者单位: 阜阳师范学院

项目金额: 80万元

中文摘要: 纳米技术是当前科学研究与开发的热点,而纳米加工是核心基础。使用原子力热探针(简称热探针)进行纳米加工是一项具有良好应用前景的新技术。项目申请人开发了一种精确控制热探针与材料表面距离的技术,并在有机材料表面上通过热刻蚀作用获得了数十纳米线宽的精细加工。本项目拟在此工作的基础上,研究应用热探针烧结金属纳米粒子,制备纳米结构。项目使用喷墨印制技术将掺杂金属纳米粒子的油墨印制在基底材料表面,然后利用热探针对喷涂区内的金属纳米粒子进行局部加热。当粒子温度高于其烧结温度时将发生烧结现象,在探针的加热区内形成具有一定物理特性的致密体。本项目期望通过研究基底材料表面性质、纳米粒子性质、油墨粘滞性和烧结温度与烧结时间等因素对烧结的影响,精确控制热探针引起的烧结区域,并在此基础上制备具有特定光电功能线宽约40 nm的微纳结构。本项目的实施可为集成电路和集成光电子等领域的研究与开发提供一种新的纳米加工方法。

中文关键词: 原子力热探针;低温烧结;微纳结构;光电极;无颗粒型银油墨

英文摘要: Nanotechnology is one of the most popular topics in scientific research, and gets growing applications in many fields. One core issue of the nanotechnology is the manufacturing techniques with nano-precision. Nanofabrication based on the heated atomic force microscope (AFM) tip is a promising method that has been developed in recent years. We developed an approach to control the tip-sample gap accurately, and succeeded in nanowritting on polymer films with a high resolution of tens of nanometers in width. Based on this work, we propose a nanofabrication method that employs an AFM tip heated by laser to sinter the metallic nanoparticles to get nanostructures. This method will be applied to prepare nanodevices. The inkjet printing technology will be employed to print the ink doped with metallic nanoparticles on substrates. Then the printed nanoparticles will be heated by a hot AFM tip. We postulate sintering will occur among the heated nanoparticles when the temperature is above a threshold, which will result in nanostructures with specific physics properties. These hypotheses will be tested by different inspection methods,for example AFM imaging and SEM imaging. The effects of ink viscosity, tip temperature, heating duration, nanoparticle and substrate properties will be investigated. These studies will make it p

英文关键词: hot AFM tip;low temperature sintering;micro- and nanostructure;optical electrode;particle-free silver ink

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
139+阅读 · 2020年5月19日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
专知会员服务
139+阅读 · 2020年5月19日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员