项目名称: 基于信噪分离的短期气候预测方法研究

项目编号: No.41475064

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 天文学、地球科学

项目作者: 万仕全

作者单位: 扬州大学

项目金额: 87万元

中文摘要: 无论是耗散结构理论还是协同学理论,都证实了偶然过程与必然过程之间的密切联系及相互转化,而非相互独立。大气运动的随机性决定了气候不是确定性运动,随机力将使气候在变化中不断产生新的有序结构,并导致非平稳现象。因此,研究气候的随机强迫机制对提高预测精度十分重要。由于缺乏对气候随机力的认识,加上求解复杂模式的微分方程又十分困难,现有的气候模型均难以模拟随机动力学,这阻碍了预测精度的进一步提高。本项目拟通过另一种途径研究随机问题:首先对观测资料中的确定性分量与随机分量进行分离研究;其次采取区别对待的策略,着重分析随机因子在确定性过程中的作用机制,研究两者有机结合的有效方案。最后,建立随机强迫的分布函数,研究在气候模型中嵌入随机作用机制的可能性,对比不同方案的优劣性。项目将在理想模型的基础上开展一系列数值实验,用演化算法和蒙特卡洛方法分析随机分布规律,发展一套基于随机强迫力的预测方法,以提高预测精度。

中文关键词: 气候预测;随机动力学;演化算法;误差订正

英文摘要: Both the theory of dissipative structures or synergetic theory, has a closed ties between accidental process and inevitable process of mutual transformation, rather than independent. Randomness of atmospheric motion determine that climate is not deterministic motion, stochastic force will make climate change continuously generate new ordered structure and lead to non-stationary phenomena. It is very important to describe effectively random force mechanisms for improving climate predictivity. Due to the lack of understanding about relevant stochastic mechanisms, it is very difficult to simulate stochastic dynamics in the climate models existed, and to solve differential equations based on a complex model, which hinders improving the accuracy of climate prediction. The project intends to study this problem by another way: Firstly, we will separate deterministic component and random component from climate observations; secondly, we will focus on analyzing the mechanism of random factors in a deterministic process using differential strategies, and set up a series of statistical models including stochastic mechanisms. Finally, we plan to get distribution function of the random process and to study on embedding a stochastic mechanism into numerical models, comparating the advantages and disadvantages of each method. With evolutionary algorithms and Monte Carlo methods, this project will carry out a series of numerical experiments based on an ideal model to revise random errors in climate model to improve the models' prediction accuracy.

英文关键词: climate prediction;stochastic;evolutionary algorithms;error correction

成为VIP会员查看完整内容
1

相关内容

【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
21+阅读 · 2021年12月26日
专知会员服务
14+阅读 · 2021年10月9日
专知会员服务
23+阅读 · 2021年10月6日
专知会员服务
20+阅读 · 2021年10月3日
专知会员服务
53+阅读 · 2021年8月29日
专知会员服务
38+阅读 · 2021年4月25日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
16+阅读 · 2021年4月12日
专知会员服务
81+阅读 · 2020年12月18日
专知会员服务
46+阅读 · 2020年11月13日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
AAAI 2022 | 条件局部图卷积网络用以气象预测
PaperWeekly
0+阅读 · 2022年3月5日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
一种小目标检测中有效的数据增强方法
极市平台
119+阅读 · 2019年3月23日
用缩放CNN消除反卷积带来的棋盘伪影
论智
19+阅读 · 2018年10月30日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Automated Data Augmentations for Graph Classification
小贴士
相关主题
相关VIP内容
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
21+阅读 · 2021年12月26日
专知会员服务
14+阅读 · 2021年10月9日
专知会员服务
23+阅读 · 2021年10月6日
专知会员服务
20+阅读 · 2021年10月3日
专知会员服务
53+阅读 · 2021年8月29日
专知会员服务
38+阅读 · 2021年4月25日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
16+阅读 · 2021年4月12日
专知会员服务
81+阅读 · 2020年12月18日
专知会员服务
46+阅读 · 2020年11月13日
相关资讯
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
AAAI 2022 | 条件局部图卷积网络用以气象预测
PaperWeekly
0+阅读 · 2022年3月5日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
一种小目标检测中有效的数据增强方法
极市平台
119+阅读 · 2019年3月23日
用缩放CNN消除反卷积带来的棋盘伪影
论智
19+阅读 · 2018年10月30日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员