项目名称: 微拟球藻甾体激素合成通路和调控网络研究

项目编号: No.31200063

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 微生物学、植物学

项目作者: 路延笃

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 22万元

中文摘要: 微藻被认为是最有潜力的油脂生物质资源之一,但其生长密度低、抗逆性能差的特点制约了其经济可行性。研究表明,甾体激素参与了微藻的生长和抗逆过程,但却无分子机理方面的研究,阻碍了甾体激素调控应用于微藻产业化中的进程。海洋微拟球藻具有易于规模培养和高产油等突出性状,项目组发现甾体激素可以促进微拟球藻的生长。项目组测定了八株微拟球藻的高质量全基因组和转录组序列。本项目将在此基础上,以微拟球藻为对象,研究甾体激素在微藻生长过程中的作用;预测甾体激素合成和信号传递的关键基因,重建代谢路径;整合转录组和代谢物组手段,从分子层面上揭示甾体激素参与的调控网络机制。本研究将开拓自然界真核生物中激素调控机制的起源、进化和多样性的系统认知;提出利用"类植物激素"改良微藻生长的新概念,为甾体激素在调控微藻能源性状中的应用奠定基础。

中文关键词: 甾体化合物;植物激素进化;功能基因组;微藻;

英文摘要: Microalgae are promising feedstocks for oil production, yet none of them has demonstrated to be economic feasible due to low growth rate and limited stress resistance. Steroidal hormones play an essential role in algae development and environmental stresses resistance; however, the molecular regulation of steroidal hormones biosynthesis, coordinated with the cell metabolism, is not documented. Transcriptional regulators are not identified, and this impedes the improvement of microalgal industry by application of steroidal hormones. Nannochloropsis strains have shown their rapid and robust growth with high levels of oil accumulation in demonstration scale. We discovered that it was growth-promoted by exogenously applied steroidal hormones. Our recent completion of eight whole genome sequences of Nannochloropsis will allow more accurate assessment of steroidal hormones biosynthetic and regulatory mechanisms. Therefore, in this proposal, besides the study on the physiology roles in microalgae growth, we propose to: i) reconstruct the steroidal hormones biosynthesis and signal transduction pathway; ii) reveal its regulatory networks at molecular level by combination of the transcriptome and metabolome analysis. The proposed work will represent the first comprehensive illumination of the origin, evolution and diversi

英文关键词: Steroids;phytohormone evolution;functional genomics;microalgae;

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
5G & AIoT 应用案例集数据观, 55页pdf
专知会员服务
57+阅读 · 2021年8月18日
专知会员服务
52+阅读 · 2021年8月17日
专知会员服务
153+阅读 · 2021年6月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
73+阅读 · 2021年5月11日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关主题
相关VIP内容
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
5G & AIoT 应用案例集数据观, 55页pdf
专知会员服务
57+阅读 · 2021年8月18日
专知会员服务
52+阅读 · 2021年8月17日
专知会员服务
153+阅读 · 2021年6月10日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
73+阅读 · 2021年5月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员