项目名称: 基于纳米颗粒过孔电动力学检测的数字式滚环扩增反应芯片基础研究

项目编号: No.81471750

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 医药、卫生

项目作者: 王玮

作者单位: 北京大学

项目金额: 73万元

中文摘要: 随着微纳机电系统技术(MEMS)的快速发展及其与生物医学技术的深度融合,实现能够高精度核酸检测的微纳流控器件成为近年来生物医学传感领域的重要研究方向之一。本项目以能够实现microRNA高精度检测的数字式滚环扩增反应芯片为研究目标,通过单个microRNA限位于纳米颗粒表面的滚环扩增反应转化为纳米颗粒表面电荷密度信息,从而实现目标分子识别;由纳米颗粒表面电荷密度变化引起表面离子浓度极化特征改变获得识别信号的转化;进而通过内嵌检测电极对的纳米孔实现表面离子浓度极化特征变化到纳米孔易位信号拾取;由上述三个过程相结合有望实现单个microRNA检测水平的数字式滚环扩增反应芯片新原理,再通过MEMS技术制备内嵌检测电极对的纳米孔关键传感结构,以期解决数字式滚环扩增检测芯片的基础问题,为后续研究奠定基础。

中文关键词: 生物传感技术;BioMEMS;滚环扩增反应;纳米颗粒;数字式核酸检测

英文摘要: With the rapid development of microelectromechanical system technique and its integration into the biomedical field, the micro/nanofluidics device, which can achieve very high-sensitive nucleic acid in-situ detection, is becoming an important topic in biomedical diagnostics. This proposal aims to set a digital rolling circle amplification chip for high-sensitive microRNA detection, trying to convert the microRNA information to surface charge density of nanoparticle by a confined-to-surface rolling circle amplification, which can thereby realize the information conversion from the target microRNA to the detectable electrical signal. The variation of the surface charge density is related to the change of ion concentration polarization status of the nanoparticle. This leads to a detectable nanopore through electrical signal and can be detected by an electrode pair embedded in a nanopore. The above three information transformation processes construct the fundamental working principle of a digital rolling circle amplification chip for microRNA detection. The key sensing unit, a nanopore with an embedding electrode pair can be achieved with the micro/nanoelectromechanical system technique. This work will be a solid footstone for the development of digital rolling circle amplification chip.

英文关键词: Biomedical sensor;BioMEMS;Rolling circle amplification reaction;Nanoparticle;Digital nucleic acid detection

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
61+阅读 · 2021年9月20日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
219+阅读 · 2020年8月1日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
美国断供芯片,俄罗斯决定从头开造光刻机
量子位
0+阅读 · 2022年4月11日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关主题
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
数据中心传感器技术应用 白皮书
专知会员服务
41+阅读 · 2021年11月13日
专知会员服务
61+阅读 · 2021年9月20日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
219+阅读 · 2020年8月1日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员