项目名称: 光晶格中多组分超冷原子气体的量子相变及多体冷却技术的研究

项目编号: No.11304386

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李永强

作者单位: 中国人民解放军国防科学技术大学

项目金额: 25万元

中文摘要: 利用光晶格中装载的超冷原子气体模拟凝聚态物理中的微观机理是当前最活跃的前沿课题之一。其中研究量子多体效应对光晶格中强关联系统的影响,探索新的量子多体冷却手段,对量子磁化效应、高温超导理论以及宏观量子材料的设计有很重要的意义。然而理论研究表明光晶格中超冷原子的磁化临界转变温度约100 pK,实验室中需要新的冷却手段才能达到这个临界温度。本项目基于动力学平均场理论,研究强关联效应以及自旋自由度对超冷原子气体性质的影响。具体来讲,基于改进的Hubbard模型利用动力学平均场理论对实验室条件下的超冷原子气体进行数值模拟,获得光晶格中多组分强关联玻色系统的零温和有限温度下的相图;其次,研究量子多体系统的热力学性质,给出相的临界温度以及熵随温度、相互作用的变化;最后,探讨原子之间的接触势以及长程偶极势对整个体系性质的影响,研究相互作用引起的量子多体冷却机制,以便对当前的实验进展进行理论的指导与建议。

中文关键词: 超冷气体;光晶格;量子相变;大自旋系统;量子多体冷却

英文摘要: Study of ultracold gases in an optical lattice, a quantum simulator of many-body quantum physics in the field of condensed matter physics, is one of the most active areas in contemporary physics. Particularly, Exploring quantum many-body effects and many-body cooling scheme is an important issue for understanding quantum phenomena, including quantum magnetism and high-Tc superconductivity, and designing macroscopic quantum materials. However, The requirements to observe these novel quantum phenomena in ultracold gases are to achieve extremely low temperature of the order of 100 pK, which is still out of reach experimentally, and new cooling schemes are needed. In this project, we study novel quantum phases and thermodynamical properties of ultracold multi-component bosonic gases in an optical lattice and focus on interaction induced cooling scheme towards novel quantum phases, based on dynamical mean field theory. First, we study bosonic many-body systems loaded into optical lattices, which is well described by Bose-Hubbard model, and obtain zero- and finite-temperature phase diagrams of these systems. Second, we study finite-temperature thermodynamical properties of quantum many-body systems, and focus on changes of critical temperature and entropy of competing phases against interactions. Finally, we investig

英文关键词: ultracold gases;optical lattice;quantum phase transition;large-spin system;quantum many-body cooling

成为VIP会员查看完整内容
0

相关内容

【2022新书】经典与量子计算导论,392页pdf
专知会员服务
71+阅读 · 2022年1月17日
专知会员服务
51+阅读 · 2021年10月16日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】信息论原理,774页pdf
专知会员服务
255+阅读 · 2021年3月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
71+阅读 · 2022年1月17日
专知会员服务
51+阅读 · 2021年10月16日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】信息论原理,774页pdf
专知会员服务
255+阅读 · 2021年3月22日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员