项目名称: 基于ELM和D-S证据理论的“低慢小”目标识别中的不确定信息融合方法研究

项目编号: No.61503407

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 其他

项目作者: 权文

作者单位: 中国人民解放军空军工程大学

项目金额: 19万元

中文摘要: “低慢小”目标自动识别技术是低空和超低空突防一个亟待解决的重要问题。相对于常规目标识别,“低慢小”目标识别数据更加不精确、更加不完整、更加不可靠、系统不确定性大,导致在对多传感器给出的信息进行融合时,往往会出现大量高冲突信息,如何解决这种高冲突信息有效融合,已成为“低慢小”目标识别亟待解决的关键技术问题。本项目将同时考虑目标识别准确性和实时性,针对“低慢小”目标识别中不确定信息处理问题,将融合识别技术引入“低慢小”目标识别问题,采用极限学习ELM与D-S证据理论相结合的方法对问题展开深入研究。引入仿生学算法ELM对“低慢小”目标数据进行证据体构建,摸索融合识别过程产生的悖论规律,寻找合理的冲突证据评价指标,解决冲突证据融合问题,提出有效的冲突证据快速融合方法,降低系统不确定性,提高系统决策能力。本项目开展及其预期成果,可为“低慢小”目标识别提供必要的技术支撑,具有重要的军事及应用价值。

中文关键词: 雷达目标识别;D-S证据理论;极限学习;不确定信息融合

英文摘要: Low Slow Small (LSS)target auto recognition technique is an imperative problem to low and very low-altitude defense penetration. Compared to normal target recognition, the data of LSS is more inaccuracy, imperfect and unreliable that the uncertainty of recognition system is heavy, a great many high conflict information has to be dealt, how to fuse these information has become a key technique of LSS target recognition system. In order to conquer the uncertainty of the system, we give consideration to both the accuracy and speedy of the system, the fusion recognition technique which combine extreme learning machine(ELM) with D-S theory method is adopted. ELM is a bionics algorithm, and we use it to the build evidence body of LSS target recognition system, we attempt to find the law of the paradoxes that generated by fusion course and good evaluating indicator of conflict system. The decision ability will be enhanced and the uncertainty will be decreased by the proposed effective conflict evidence fusion schemes. The work of this project will provide necessary theoretical foundations and technical supports to LSS target recognition system, this is of significant military meanings and application values.

英文关键词: radar target recognition;D-S evidence theory;ELM;uncertain information fusion

成为VIP会员查看完整内容
1

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
离散制造业边缘计算 解决方案白皮书,46页pdf
专知会员服务
31+阅读 · 2022年3月23日
【博士论文】机器学习中的标记增强理论 与应用研究
专知会员服务
29+阅读 · 2021年12月3日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
15+阅读 · 2021年8月6日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
基于深度学习的数据融合方法研究综述
专知会员服务
137+阅读 · 2020年12月10日
专知会员服务
37+阅读 · 2020年10月15日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
【学科发展报告】无人船
中国自动化学会
27+阅读 · 2019年1月8日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
90+阅读 · 2022年4月17日
离散制造业边缘计算 解决方案白皮书,46页pdf
专知会员服务
31+阅读 · 2022年3月23日
【博士论文】机器学习中的标记增强理论 与应用研究
专知会员服务
29+阅读 · 2021年12月3日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
15+阅读 · 2021年8月6日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
基于深度学习的数据融合方法研究综述
专知会员服务
137+阅读 · 2020年12月10日
专知会员服务
37+阅读 · 2020年10月15日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
相关资讯
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
【学科发展报告】无人船
中国自动化学会
27+阅读 · 2019年1月8日
无人机集群对抗研究的关键问题
无人机
56+阅读 · 2018年9月16日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员