项目名称: 基于ELM和D-S证据理论的“低慢小”目标识别中的不确定信息融合方法研究
项目编号: No.61503407
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 其他
项目作者: 权文
作者单位: 中国人民解放军空军工程大学
项目金额: 19万元
中文摘要: “低慢小”目标自动识别技术是低空和超低空突防一个亟待解决的重要问题。相对于常规目标识别,“低慢小”目标识别数据更加不精确、更加不完整、更加不可靠、系统不确定性大,导致在对多传感器给出的信息进行融合时,往往会出现大量高冲突信息,如何解决这种高冲突信息有效融合,已成为“低慢小”目标识别亟待解决的关键技术问题。本项目将同时考虑目标识别准确性和实时性,针对“低慢小”目标识别中不确定信息处理问题,将融合识别技术引入“低慢小”目标识别问题,采用极限学习ELM与D-S证据理论相结合的方法对问题展开深入研究。引入仿生学算法ELM对“低慢小”目标数据进行证据体构建,摸索融合识别过程产生的悖论规律,寻找合理的冲突证据评价指标,解决冲突证据融合问题,提出有效的冲突证据快速融合方法,降低系统不确定性,提高系统决策能力。本项目开展及其预期成果,可为“低慢小”目标识别提供必要的技术支撑,具有重要的军事及应用价值。
中文关键词: 雷达目标识别;D-S证据理论;极限学习;不确定信息融合
英文摘要: Low Slow Small (LSS)target auto recognition technique is an imperative problem to low and very low-altitude defense penetration. Compared to normal target recognition, the data of LSS is more inaccuracy, imperfect and unreliable that the uncertainty of recognition system is heavy, a great many high conflict information has to be dealt, how to fuse these information has become a key technique of LSS target recognition system. In order to conquer the uncertainty of the system, we give consideration to both the accuracy and speedy of the system, the fusion recognition technique which combine extreme learning machine(ELM) with D-S theory method is adopted. ELM is a bionics algorithm, and we use it to the build evidence body of LSS target recognition system, we attempt to find the law of the paradoxes that generated by fusion course and good evaluating indicator of conflict system. The decision ability will be enhanced and the uncertainty will be decreased by the proposed effective conflict evidence fusion schemes. The work of this project will provide necessary theoretical foundations and technical supports to LSS target recognition system, this is of significant military meanings and application values.
英文关键词: radar target recognition;D-S evidence theory;ELM;uncertain information fusion