项目名称: 基于低频噪声分析的电荷陷阱存储器可靠性研究

项目编号: No.61306106

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 杨潇楠

作者单位: 郑州大学

项目金额: 25万元

中文摘要: 基于电荷陷阱存储单元的三维存储被认为是20nm以下结点的主流存储技术,而电荷陷阱存储单元的可靠性问题一直是其实际应用的最大阻碍之一。本项目着眼于电荷陷阱存储器可靠性的关键问题- - 耐久性和数据保持特性,利用低频噪声分析,结合电荷泵技术,在可靠性退化规律的探讨、失效模型的建立、深层次物理证据的获取及器件性能的优化等方面展开深入的研究。主要研究内容包括:获得良好性能的存储器件;明晰电荷陷阱存储单元可靠性的退化规律;明确衬底-隧穿层界面附近陷阱的空间、能量分布及其与可靠性的关系;建立器件的可靠性退化模型并对依此提出器件可靠性优化的方法。本项目在电荷陷阱存储器件可靠性退化机理研究方面,在缺陷阱缺分布规律探索方面,在低频噪声技术在可靠性分析应用方面,都具有重要的源头创新意义。本项目可为面向三维集成的电荷陷阱存储单元设计和应用提供理论指导。

中文关键词: 随机电报噪声;可靠性;1/f噪音;闪存;

英文摘要: The 3D storage technology based on charge trapping memory is regarded as the promising storage technology below the 20nm process node, however, the reliability problem of charge trapping memory cell is still one of the main impedes for its real application. This project focuses on the key reliability characteristics of endurance and data retention. The rule of reliability degradation, failure mechanism, the acquisition of deep physical proof and the improvement methods of reliability are systematically studied based on the low frequency noise analyze, combined with charge pumping technology. The main contents are shown below. The device with excellent function will be obtained and the rule of reliability degradation will be studied. The space and energy distribution of traps near the substrate-tunneling layer interface and whose relationship with reliability will also be discussed. The reliability degradation model will be established and reliability optimization methods will be proposed. The project makes sense of innovation in respects of establishment of the reliability degradation model, the study of trap distribution, and the application of low frequency noise on reliability analyze . This project can provide a theoretical guard for charge trapping memory in 3D integration application.

英文关键词: Random telegraph noise;Reliability;1/f noise;Flash memory;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
81+阅读 · 2022年4月17日
《美国陆军武器系统手册(2020-2021)》432页pdf
专知会员服务
111+阅读 · 2022年4月11日
【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
36+阅读 · 2021年5月9日
专知会员服务
29+阅读 · 2021年1月9日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
专家观点 I 方振雷博士:光电建材的发展
光伏专委会CPVS
0+阅读 · 2022年3月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
你能接受刘海屏的 MacBook 吗?
ZEALER订阅号
0+阅读 · 2021年10月18日
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
分布式智能计算系统前沿
中国计算机学会
17+阅读 · 2019年10月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
81+阅读 · 2022年4月17日
《美国陆军武器系统手册(2020-2021)》432页pdf
专知会员服务
111+阅读 · 2022年4月11日
【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
36+阅读 · 2021年5月9日
专知会员服务
29+阅读 · 2021年1月9日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
相关资讯
专家观点 I 方振雷博士:光电建材的发展
光伏专委会CPVS
0+阅读 · 2022年3月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
你能接受刘海屏的 MacBook 吗?
ZEALER订阅号
0+阅读 · 2021年10月18日
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
分布式智能计算系统前沿
中国计算机学会
17+阅读 · 2019年10月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员