一文带你了解深度学习中的各种卷积

2022 年 7 月 29 日 极市平台
↑ 点击 蓝字  关注极市平台

作者丨Kunlun Bai
来源丨机器之心
编辑丨极市平台

极市导读

 

本文将围绕深度学习领域的卷积,用浅显易懂的方式介绍各种卷积设计及其优势,帮助读者理解它们实际的工作方式。 >>极市七夕粉丝福利活动:搞科研的日子是364天,但七夕只有一天!

如果你听过深度学习中不同的卷积类型,包括:
2D, 3D, 1*1, Transposed, Dilated, Spatially Separable, Depthwise Separable, Flattened, Grouped, Shuffled Grouped Convolution, ...
这些,但是并不清楚它们实际意味着什么,本文就是带大家学习这些卷积到底是如何工作的。
在本文中,我尽量使用简单明了的方式向大家解释深度学习中常用的几种卷积,希望能够帮助你建立学习体系,并为你的研究提供参考。

1. Convolution VS Cross-correlation

卷积是一项在信号处理、视觉处理或者其他工程/科学领域中应用广泛的技术。在深度学习中,有一种模型架构,叫做Convolution Neural Network。深度学习中的卷积本质上就是信号处理中的Cross-correlation。当然,两者之间也存在细微的差别。
在信号/图像处理中,卷积定义如下:
由上公式可以看出,卷积是通过两个函数f和g生成第三个函数的一种数学算子。对f与经过翻转和平移的g乘积进行积分。过程如下:
信号处理中的卷积。滤波器g首先翻转,然后沿着横坐标移动。计算两者相交的面积,就是卷积值。
另一方面,Cross-correlation被称为滑动点积或者两个函数的滑动内积。Cross-correlation中的滤波器函数是不用翻转的。它直接划过特征函数f。f和g相交的区域就是Cross-correlation。
在深度学习中,卷积中的滤波器不翻转。严格来说,它是Cross-correlation。我们基本上执行元素对元素的加法或者乘法。但是,在深度学习中,我们还是习惯叫做Convolution。滤波器的权重是在训练期间学习的。

2. Convolution in Deep Learning

卷积的目的是为了从输入中提取有用的特征。在图像处理中,有很多滤波器可以供我们选择。每一种滤波器帮助我们提取不同的特征。比如水平/垂直/对角线边缘等等。在CNN中,通过卷积提取不同的特征,滤波器的权重在训练期间自动学习。然后将所有提取到的特征“组合”以作出决定。
卷积的优势在于,权重共享和平移不变性。同时还考虑到了像素空间的关系,而这一点很有用,特别是在计算机视觉任务中,因为这些任务通常涉及识别具有空间关系的对象。(例如:狗的身体通常连接头部、四肢和尾部)。

The single channel version

单个通道的卷积
在深度学习中,卷积是元素对元素的加法和乘法。对于具有一个通道的图像,卷积如上图所示。在这里的滤波器是一个3x3的矩阵[[0,1,2],[2,2,0],[0,1,2]]。滤波器滑过输入,在每个位置完成一次卷积,每个滑动位置得到一个数字。最终输出仍然是一个3x3的矩阵。(注意,在上面的例子中,stride=1,padding=0)

The muti-channel version

在很多应用中,我们需要处理多通道图片。最典型的例子就是RGB图像。
不同的通道强调原始图像的不同方面
另一个多通道数据的例子是CNN中的层。卷积网络层通常由多个通道组成(通常为数百个通道)。每个通道描述前一层的不同方面。我们如何在不同深度的层之间进行转换?如何将深度为n的层转换为深度为m下一层?
在描述这个过程之前,我们先介绍一些术语:layers(层)、channels(通道)、feature maps(特征图),filters(滤波器),kernels(卷积核)。从层次结构的角度来看,层和滤波器的概念处于同一水平,而通道和卷积核在下一级结构中。通道和特征图是同一个事情。一层可以有多个通道(或者说特征图)。如果输入的是一个RGB图像,那么就会有3个通道。“channel”通常被用来描述“layer”的结构。相似的,“kernel”是被用来描述“filter”的结构。
layer和channel之间,filter和kernel之间的不同
filter和kernel之间的不同很微妙。很多时候,它们可以互换,所以这可能造成我们的混淆。那它们之间的不同在于哪里呢?一个“Kernel”更倾向于是2D的权重矩阵。而“filter”则是指多个Kernel堆叠的3D结构。如果是一个2D的filter,那么两者就是一样的。但是一个3Dfilter,在大多数深度学习的卷积中,它是包含kernel的。每个卷积核都是独一无二的,主要在于强调输入通道的不同方面。
讲了概念,下面我们继续讲解多通道卷积。将每个内核应用到前一层的输入通道上以生成一个输出通道。这是一个卷积核过程,我们为所有Kernel重复这样的过程以生成多个通道。然后把这些通道加在一起形成单个输出通道。下图:
输入是一个5x5x3的矩阵,有三个通道。filter是一个3x3x3的矩阵。首先,filter中的每个卷积核分别应用于输入层中的三个通道。执行三次卷积,产生3个3x3的通道。
然后,这三个通道相加(矩阵加法),得到一个3x3x1的单通道。这个通道就是在输入层(5x5x3矩阵)应用filter(3x3x3矩阵)的结果。
同样的,我们可以把这个过程看作是一个3Dfilter矩阵滑过输入层。值得注意的是,输入层和filter有相同的深度(通道数量=卷积核数量)。3Dfilter只需要在2维方向上移动,图像的高和宽。这也是为什么这种操作被称为2D卷积,尽管是使用的3D滤波器来处理3D数据。在每一个滑动位置,我们执行卷积,得到一个数字。就像下面的例子中体现的,滑动水平的5个位置和垂直的5个位置进行。总之,我们得到了一个单一通道输出。
现在,我们一起来看看,如何在不同深度的层之间转换。假设输入层有_x_in__个通道,我们想得到输出有_D_out__个通道。我们只需要将_D_out__ filters应用到输入层。每一个 filter有_D_in__个卷积核。每个filter提供一个输出通道。完成该过程,将结果堆叠在一起形成输出层。

3. 3D Convolution

在上一节的最后一个插图中,可以看出,这实际上是在完成3D卷积。但是在深度学习中,我们仍然把上述操作称为2D卷积。3D数据,2D卷积。滤波器的深度和输入层的深度是一样的。3D滤波器只在两个方向上移动(图像的高和宽),而输出也是一个2D的图像(仅有一个通道)。
3D卷积是存在的,它们是2D卷积的推广。在3D卷积中,滤波器的深度小于输入层的深度(也可以说卷积核尺寸小于通道尺寸)。所以,3D滤波器需要在数据的三个维度上移动(图像的长、宽、高)。在滤波器移动的每个位置,执行一次卷积,得到一个数字。当滤波器滑过整个3D空间,输出的结果也是一个3D的。
和2D卷积能够编码2D域中的对象关系一样,3D卷积也可以描述3D空间中的对象关系。3D关系在一些应用中是很重要的,比如3D分割/医学图像重构等。

4. 1x1 Convolution

下面我们来看一种有趣的操作,1x1卷积。
我们会有疑问,这种卷积操作真的有用吗?看起来只是一个数字乘以输入层的每个数字?正确,也不正确。如果输入数据只有一个通道,那这种操作就是将每个元素乘上一个数字。
但是,如果输入数据是多通道的。那么下面的图可以说明,1 x 1卷积是如何工作的。输入的数据是尺寸是H x W x D,滤波器尺寸是1 x 1x D,输出通道尺寸是H x W x 1。如果我们执行N次1x1卷积,并将结果连接在一起,那可以得到一个H x W x N的输出。
1 x 1卷积在论文《Network In Network》中提出来。并且在Google发表的《Going Deeper with  Convolution》中也有用到。1 x 1卷积的优势如下:
  • 降低维度以实现高效计算

  • 高效的低维嵌入,或特征池

  • 卷积后再次应用非线性

前两个优势可以从上图中看出。完成1 x 1卷积操作后,显著的降低了depth-wise的维度。如果原始输入有200个通道,那么1 x 1卷积操作将这些通道嵌入到单一通道。第三个优势是指,在1 x 1卷积后,可以添加诸如ReLU等非线性激活。非线性允许网络学习更加复杂的函数。

5. Convolution Arithmetic

现在我们知道了depth维度的卷积。我们继续学习另外两个方向(height&width),同样重要的卷积算法。一些术语:
Kernel size(卷积核尺寸):卷积核在上面的部分已有提到,卷积核大小定义了卷积的视图。
Stride(步长):定义了卷积核在图像中移动的每一步的大小。比如Stride=1,那么卷积核就是按一个像素大小移动。Stride=2,那么卷积核在图像中就是按2个像素移动(即,会跳过一个像素)。我们可以用stride>=2,来对图像进行下采样。
Padding:可以将Padding理解为在图像外围补充一些像素点。padding可以保持空间输出维度等于输入图像,必要的话,可以在输入外围填充0。另一方面,unpadded卷积只对输入图像的像素执行卷积,没有填充0。输出的尺寸将小于输入。
下图是2D卷积,Kernel size=3,Stride=1,Padding=1:
这里有一篇写得很好的文章,推荐给大家。它讲述了更多的细节和举了很多例子来讲述不同的Kernel size、stride和padding的组合。这里我只是总结一般案例的结果。
输入图像大小是_i_,kernel size=k,padding=p,stride=s,那么卷积后的输出计算如下:

6. Transposed Convolution

在许多应用和网络架构中,我们经常想要做逆向的卷积,即要进行上采样。一些示例包括了图像高分辨率,需要将低维特征映射到高维空间,比如自动编码器或者语义分割。(对于语义分割,首先用编码器提取特征图,然后在解码器中恢复原始图像大小,这样来实现分类原始图像的每个像素。)
更直接的,可以通过应用插值方案或手动创建规则来实现上采样。现在的一些结构,像神经网络,倾向于让网络自己学习正确的转换。要实现这一点,我们可以使用Transposed Convolution。
转置卷积(Transposed Convolution)在文献中也称为deconvolution或者fractionally strided convolution。
但是“deconvolution”这个名字不太合适,因为Transposed Convolution毕竟不是信号/图像处理中定义的那种反卷积。从技术上讲,在信号/图像处理中deconvolution是反向的卷积操作。我们这里讲的不是这种情况。因为这,很多学者很反对将Transposed Convolution叫做deconvolution。下面我们会讲解,为什么将这种卷积操作叫做“Transposed Convolution”会更合适。
我们可以使用直接卷积实现转置卷积。看下面图片中的例子,输入是2 x 2,填充2 x 2的0边缘,3 x 3的卷积核,stride=1。上采样输出大小是4 x 4。
很有趣,通过填充和步长的调整,我们可以把同一张2 x 2的图像映射成不同大小的输出。下面,转置卷积应用在相同的2 x 2输入(在输入之间插入一个0)填充2 x 2边缘,stride=1。现在,输出大小为5 x 5。
通过上面的例子了解转置卷积,可以帮我们建立直观的印象。但是要具体了解如何应用,就要看看在计算机中矩阵乘法是如何计算的。这样我们也可以看出,为什么Transposed Convolution是更好的名字。
在卷积中,让我们定义C作为我们的卷积核,Large是输入图像,Small是卷积输出图像。完成卷积(矩阵乘法)后,我们下采样large图像,得到小的输出图像。卷积中的矩阵乘法满足C x Large=Small。
下面的例子展示了该操作是怎么工作的。首先将输入变成一个16 x 1的矩阵,然后将Kernel转换成4 x 16的稀疏矩阵。在稀疏矩阵和变换后的输入间执行矩阵乘法。完成后,将得到的结果矩阵(4 x 1)转换回2 x 2输出。
现在,如果我们在等式两边多次执行矩阵C转置,得到转置矩阵CT,使用矩阵与其转置矩阵的乘法给出单位矩阵的属性,得到如下的公式CT x Large=Small如下图:
如你所见,我们执行了小图像到大图像的下采样。这也是我们想要得到的。现在你也明白“Transposed Convolution”的由来。

7. Dilated Convolution

这是标准的离散卷积:
机器人厨师本尊
dilated convolution如下:
当_l=1_,dilated convolution称为标准离散卷积。
直观地说,dilated convolutions通过在卷积核元素之间插入空格来“扩张”卷积核。扩充的参数取决于我们想如何扩大卷积核。具体实现可能会不同,但内核元素之间通常会插入l-1个空格。下面的图展示了,当kernel大小为l=1,2,4的时候。
dilated convolutions的感受野,在没有增加消耗的情况下,能够观察到更大的感受野。
在图中,3 x 3的红点表明,卷积后,输出图像是3x3像素。虽然三个卷积提供的输出具有相同的大小,但是模型的感受野却是不同的。当l=1时,感受野是3 x 3;l=2时,感受野是7 x7;当l=3时,感受野扩张到15 x 15。有趣的是,这些操作的相关参数数量基本相同。因此,dilated convolution被用来扩大输出的感受野,而不增加kernel的尺寸,当多个dilated convolution一个接一个堆叠时,这特别有效。

8. Separable Convolution

Separable Convolution会在一些神经网络结构中用到,比如MobileNet。有Spatially Separable Convolution 和depthwise Separable Convolution之分。

Spatially Separable Convolution

Spatially Separable Convolution在图像的2D空间维度上操作,比如高度和宽度。从概念上说,可以将该卷积操作分为两步。我们可以看下面的例子,一个Sobel kernel,3 x 3尺寸,分为3 x 1和 1 x 3的两个kernel。
一般卷积中,是3 x 3 kernel直接和图像卷积。而Spatially Separable Convolution中,首先是3 x 1的卷积核和图像卷积, 然后再是1 x 3卷积核操作。这样一来,只需要6个参数就可以搞定了,而相同的一般卷积操作需要9个参数。
更多的,在Spatially Separable Convolution中,矩阵乘法也更少。
我们一起来看一个具体的例子,一个5 x 5的图像,3 x 3的卷积核(stride=1,padding=0),需要水平扫描三次,垂直扫描三次。有9个位置,可以看下图。在每个位置,9个元素要进行乘法。所以总共是要执行9 x 9=81次乘法。
我们可以来看看Spatially Separable Convolution中是怎么样的。我们首先应用3 x 1的filter在5 x 5图像上。那么应该是水平扫描5个位置,垂直扫描3个位置。那么总共应该是5 x 3=15个位置,如下方有黄点的图所示。在每个位置,完成3次乘法,总共是15 x 3=45次乘法。现在我们得到的是一个3 x 5的矩阵。然后再在3 x 5矩阵上应用1 x 3kernel,那么需要水平扫描3个位置和垂直扫描3个位置。总共9个位置,每个位置执行3次乘法,那么是9 x 3=27次,所以完成一次Spatially Separable Convolution总共是执行了45+27=72次乘法,这比一般卷积要少。
让我们归纳一下上面的例子。现在,我们应用卷积在一个N x N的图像上,kernel尺寸为m x m,stride=1,padding=0。传统卷积需要(N-2) x (N-2) x m+(N-2)x(N-2)xm=(2N-2)x(N-2)xm次乘法。
标准卷积和Spatially Separable Convolution的计算成本比为:
当有的层,图像的尺寸N远远大于过滤器的尺寸m(N>>m)时,上面的等式就可以简化为2/m。这意味着,在该种情况下,如果kernel大小为3 x 3,那么Spatially Separable Convolution的计算成本是传统卷积的2/3。
虽然Spatially Separable Convolution可以节省成本,但是它却很少在深度学习中使用。最主要的原因是,不是所有的kernel都可以被分为两个更小的kernel的。如果我们将所有传统卷积用Spatially Separable Convolution替代,那么这将限制在训练过程中找到所有可能的kernels。找到的结果也许就不是最优的。

Depthwise Separable Convolution

现在让我们再来看看Depthwise  Separable Convolution,这在深度学习中就应用得更多一些了。该卷积也是分两步,DW卷积和1 x 1卷积。
在讲解这步骤之前,我们有必要回顾一下上面提到的2D卷积和1 x 1卷积。让我们快速过一下标准2D卷积。直接看具体的案例,输入的大小是7 x 7 x 3(高、宽、通道数)。卷积核大小3 x 3 x 3。完成2D卷积操作之后,输出是5 x 5 x 1(只有一个通道)。
一般的,两个网络层之间会有多个过滤器。这里我们有128个过滤器。在应用128个2D卷积后,我们有128个5 x 5 x 1的输出特征图。我们然后将这些特征图堆叠到单层,大小为5 x 5 x 128。通过该操作,我们将输入(7 x 7 x 3)的转换成了5 x 5 x 128的输出。在空间上,高度和宽度都压缩了,但是深度拓展了。
128个filter,将输出扩展到128层
现在我们看看使用depthwise separable convolution ,让我们看看如何获得相同的转换效果。
首先,我们将deothwise convolution应用到输入层。和使用单一3 x 3 x 3filter在2D卷积上不同,我们使用3个分开的kernel。每个kernel的尺寸是3 x 3 x 1。每个kernel只完成输入的单通道卷积。每个这样的卷积操作会得到一个5 x 5 x 1的特征图。然后,我们将三个特征图堆叠到一起,得到一个5 x 5 x 3的图像。操作结束,输出的大小为5 x 5 x 3。我们压缩了空间维度,但是输出的深度和输入是一样的。
depthwise separable convolution的第二步是,扩充深度,我们使用大小为1 x 1 x 3的kernel,完成1 x 1卷积。最后得到5 x 5 x 1的特征图。
在完成128个1 x 1卷积操作之后,我们得到了5 x 5 x 128的层。
通过上面的两步,deothwise separable convolution将输入(7 x 7 x 3)的转换成了5 x 5 x 128的输出。
整个过程如下图:
因此,deothwise separable convolution的优势是什么呢?效率!比起2D卷积,deothwise separable convolution要少很多操作。
让我们来看看2D卷积的计算消耗。有128个3 x 3 x 3卷积核,移动5 x 5次。一共要执行128 x 3 x 3 x 3 x 5 x 5=86400乘法。
separable convolution呢?在第一步deothwise convolution中,这里有3个3 x 3 x 1kernel,移动5 x 5次,一共是675次乘法。在第二步中,128个1 x 1 x 3卷积核移动5 x 5次,一共9600次乘法。总的计算消耗是675+9600=10275次乘法。消耗仅仅只有2D卷积的12%。
因此,随意一张图的处理,应用deothwise separable convolution可以节省多少时间呢?让我们根据上面的案例做一般推导。现在,假设输入是H x W x D,2D卷积(stride=1,padding=0) Nc个kernel大小为h x h x D,其中h是偶数。将输入H x W x D转换为输出层(H-h+1 x W-h+1 x Nc )。
总的乘法操作是:Nc x h x h x D x (H-h+1) x (W-h+1)。
另一方面,使用depthwise separable convolution的计算消耗是:
D x h x h x 1 x (H-h+1) x (W-h+1) + Nc x 1 x 1 x D x (H-h+1) x (W-h+1) = (h x h + Nc) x D x (H-h+1) x (W-h+1)
后者和前者的计算消耗比例为:
在现在的很多结构中,输出层都有相当多的通道。也就是说_ Nc_往往远大于h。所以,如果是3 x 3的filter,那么2D卷积花的时间是depthwise separable convolution的9倍,如果是5 x 5的卷积核,将是25倍。
depthwise separable convolution的劣势是什么呢?它减少了卷积的参数。如果是一个较小的模型,那么模型的空间将显著减小。这造成的结果就是,模型得到的结果并不是最优。
原文链接:
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


公众号后台回复“ECCV2022”获取论文分类资源下载~

△点击卡片关注极市平台,获取 最新CV干货

极市干货
算法项目: CV工业项目落地实战 目标检测算法上新!(年均分成5万)
实操教程 Pytorch - 弹性训练原理分析《CUDA C 编程指南》导读
极视角动态: 极视角作为重点项目入选「2022青岛十大资本青睐企业」榜单! 极视角发布EQP激励计划,招募优质算法团队展开多维度生态合作! 极市AI校园大使招募


点击阅读原文进入CV社区

收获更多技术干货


登录查看更多
0

相关内容

基于图卷积神经网络的文本分类方法研究综述
专知会员服务
37+阅读 · 2022年8月26日
「深度学习注意力机制 」最新TKDE2022研究综述
专知会员服务
100+阅读 · 2022年3月29日
2021->2022必看的十篇「深度学习领域综述」论文
专知会员服务
112+阅读 · 2022年1月1日
专知会员服务
22+阅读 · 2021年7月15日
专知会员服务
40+阅读 · 2021年6月21日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
80+阅读 · 2020年1月13日
深入卷积神经网络背后的数学原理
人工智能学家
10+阅读 · 2019年4月26日
万字长文带你看尽深度学习中的各种卷积网络
AI科技评论
11+阅读 · 2019年2月19日
什么是深度学习的卷积?
论智
18+阅读 · 2018年8月14日
【干货】​深度学习中的线性代数
专知
21+阅读 · 2018年3月30日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【干货】卷积神经网络CNN学习笔记
机器学习研究会
15+阅读 · 2017年12月17日
深度学习(可视化部分)-使用keras识别猫咪
北京思腾合力科技有限公司
10+阅读 · 2017年11月30日
干货 | 深度学习之CNN反向传播算法详解
机器学习算法与Python学习
17+阅读 · 2017年11月21日
干货 | 深度学习之卷积神经网络(CNN)的模型结构
机器学习算法与Python学习
12+阅读 · 2017年11月1日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
69+阅读 · 2022年6月13日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
21+阅读 · 2018年2月14日
VIP会员
相关VIP内容
基于图卷积神经网络的文本分类方法研究综述
专知会员服务
37+阅读 · 2022年8月26日
「深度学习注意力机制 」最新TKDE2022研究综述
专知会员服务
100+阅读 · 2022年3月29日
2021->2022必看的十篇「深度学习领域综述」论文
专知会员服务
112+阅读 · 2022年1月1日
专知会员服务
22+阅读 · 2021年7月15日
专知会员服务
40+阅读 · 2021年6月21日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
80+阅读 · 2020年1月13日
相关资讯
深入卷积神经网络背后的数学原理
人工智能学家
10+阅读 · 2019年4月26日
万字长文带你看尽深度学习中的各种卷积网络
AI科技评论
11+阅读 · 2019年2月19日
什么是深度学习的卷积?
论智
18+阅读 · 2018年8月14日
【干货】​深度学习中的线性代数
专知
21+阅读 · 2018年3月30日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【干货】卷积神经网络CNN学习笔记
机器学习研究会
15+阅读 · 2017年12月17日
深度学习(可视化部分)-使用keras识别猫咪
北京思腾合力科技有限公司
10+阅读 · 2017年11月30日
干货 | 深度学习之CNN反向传播算法详解
机器学习算法与Python学习
17+阅读 · 2017年11月21日
干货 | 深度学习之卷积神经网络(CNN)的模型结构
机器学习算法与Python学习
12+阅读 · 2017年11月1日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年10月2日
Arxiv
69+阅读 · 2022年6月13日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
21+阅读 · 2018年2月14日
Top
微信扫码咨询专知VIP会员