不可错过!普林斯顿陈丹琦最新《大语言模型理解》2022课程!全面讲述BERT、GPT、T5等大模型,附Slides

2022 年 10 月 29 日 新智元



  新智元报道  

来源:专知
编辑:Aeneas
【新智元导读】本课程旨在帮助您在自然语言处理方面进行前沿研究,特别是与预训练语言模型相关的主题。


在过去3-4年中,大型语言模型(LLMs)彻底改变了自然语言处理(NLP)领域。它们构成了最先进的系统的基础,在解决广泛的自然语言理解和生成任务时无处不在。随着前所未有的潜力和能力,这些模型也带来了新的道德和可扩展性挑战。本课程旨在涵盖围绕预训练语言模型的前沿研究课题。我们将讨论它们的技术基础(BERT、GPT、T5模型、专家混合模型、基于检索的模型)、新出现的功能(知识、推理、少样本学习、上下文学习)、微调和适应、系统设计以及安全和伦理。我们将涵盖每个主题,并深入讨论重要论文。学生将被期望定期阅读和提交研究论文,并在结束时完成一个研究项目。

这是一门高级研究生课程,所有学生都应该上过机器学习和NLP课程,并熟悉诸如transformer等深度学习模型。

https://www.cs.princeton.edu/courses/archive/fall22/cos597G/

学习目标

  • 本课程旨在帮助您在自然语言处理方面进行前沿研究,特别是与预训练语言模型相关的主题。我们将讨论最先进的技术,它们的能力和局限性。
  • 练习你的研究技能,包括阅读研究论文,进行文献调查,口头报告,以及提供建设性的反馈。
  • 通过期末项目获得实践经验,从头脑风暴到实施和实证评估,再到撰写期末论文。

课程内容:
  • 引言
  • BERT
  • T5 (encoder-decoder models)
  • GPT-3 (decoder-only models)
  • Prompting for few-shot learning
  • Prompting as parameter-efficient fine-tuning
  • In-context learning
  • Calibration of prompting LLMs
  • Reasoning
  • Knowledge
  • Data

参考论文:On the Opportunities and Risks of Foundation Models

  • 作者:Percy Liang、李飞飞等
  • 论文链接:https://arxiv.org/pdf/2108.07258.pdf

摘要:最近,斯坦福大学的 Percy Liang、Rishi Bommasani(Percy Liang 的学生) 、李飞飞等 100 多位研究者联名发布了一篇论文。在论文中,他们给大模型取了一个名字——「基础模型(foundation model)」,并系统探讨了基础模型的机遇与风险。「基础」代表至关重要,但并不完备。

论文正文分为四个部分,分别阐述了基础模型的能力、应用、相关技术和社会影响,其具体内容如下:

  • 能力:语言、视觉、机器人学、推理、交互、理解等;
  • 应用:医疗、法律、教育等;
  • 技术:建模、训练、适应、评估、系统、数据、安全与隐私、稳健性、理论、可解释性等;
  • 社会影响:不平等、滥用、环境、法规、经济、伦理等。



 这篇论文的问世将为负责任地发展、部署基础模型提供一些借鉴。


参考资料:
https://mp.weixin.qq.com/s/tS454NVvB__-jXGD2Hew3g




登录查看更多
5

相关内容

不可错过!UCSD《机器学习数据系统(ML)》2021课程
专知会员服务
32+阅读 · 2021年11月13日
【课程推荐】普林斯顿陈丹琦COS 484: 自然语言处理课程
专知会员服务
84+阅读 · 2019年12月11日
清华陈丹琦:如何让「大模型」变小
THU数据派
11+阅读 · 2022年7月28日
ACL 2022 | NLP领域最新热门研究,你一定不能错过!
微软研究院AI头条
0+阅读 · 2022年5月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员