单GPU每秒76帧,重叠对象也能完美分割,多模态Transformer用于视频分割效果惊艳

2022 年 3 月 7 日 机器之心
机器之心报道
机器之心编辑部

视频分割效果优于所有现有方法,这篇入选CVPR 2022的论文是用Transformer解决CV任务的又一典范。


基于注意力的深度神经网络(DNN)在NLP和CV等不同领域的各种任务上都表现出了卓越的性能。这些进展使得此类网络(如 Transformer)成为解决多模态问题的有力候选。特别是近一两年,Transformer 模型已经开始在CV任务上大展手脚,从目标识别到检测,效果优于通用的CNN视觉骨干网络。

参考视频对象分割(referring video object segmentation, RVOS)任务涉及到给定视频帧中文本参考对象实例的分割。相比之下,在得到更广泛研究的参考图像分割(referring image segmention, RIS)任务中,对象主要通过它们的外观进行参考。在RVOS中,对象可以通过它们正在执行或参与的动作进行参考。这使得 RVOS比RIS复杂得多,因为参考动作的文本表达通常无法从单个静态帧中推导出来。

此外,与基于图像的 RIS 不同,RVOS 方法可能还需要跨多个帧(即跟踪)来建立参考对象的数据关联,以处理遮挡或运动模糊这类的干扰。

为了解决这些挑战,现有 RVOS 方法往往依赖复杂的 pipeline。在被CVPR 2022接收的一篇论文《End-to-End Referring Video Object Segmentation with Multimodal Transformers》中,来自以色列理工学院的研究者提出了一种简单的、基于Transformer的端到端RVOS方法——Multimodal Tracking Transformer(MTTR )。


论文地址:https://arxiv.org/pdf/2111.14821.pdf
项目地址:https://github.com/mttr2021/MTTR
Huggingface Spaces Gradio demo:https://huggingface.co/spaces/akhaliq/MTTR

具体地,他们使用MTTR 将任务建模成序列预测问题。给定一个视频和文本查询,该模型在确定文本参考的对象之前为视频中所有对象生成预测序列。并且,他们的方法不需要与文本相关的归纳偏置模块,利用简单的交叉熵损失对齐视频和文本。因此,该方法相比以往简单的多。

研究者提出的pipeline示意图如下所示。首先使用标准的Transformer文本编码器从文本查询中提取语言特征,使用时空编码器从视频帧中提取视觉特征。接着将这些特征传递给多模态 Transformer 以输出几个对象预测序列。然后为了确定哪个预测序列能够最好地对应参考对象,研究者计算了每个序列的文本参考分数。为此,他们还提出了一种时序分割voting方案,使模型在做出决策时专注于最相关的部分。



从实验结果来看,MTTR 在 A2D-Sentences 和 JHMDB-Sentences 数据集上分别实现了+5.7和+5.0的mAP增益,同时每秒能够处理76帧。

研究者还展示了一系列不同对象之间的实际分割效果,如下穿白色T恤和蓝色短裤的冲浪者(淡黄色冲浪板)。


又如嬉戏玩闹的大小猩猩。


网友对这项研究展示的视频对象分割效果赞不绝口。有人表示,即使在重叠的对象上,分割效果也很有效。



方法介绍


任务定义。RVOS 的输入为帧序列
,其中 ;文本查询为 ,这里t_i是文本中的第i个单词;大小为 的感兴趣帧的子集为 ,目标是在每一帧 中分割对象

特征提取。该研究首先使用深度时空编码器从序列 V 中的每一帧中提取特征。同时使用基于 Transformer 的文本编码器从文本查询 T 中提取语言特征。然后,将空间-时间和语言特征线性投影到共享维度 D。

实例预测。之后,感兴趣的帧特征被平化(flattened)并与文本嵌入分开连接,产生一组T_I多模态序列,这些序列被并行馈送到 Transformer。在 Transformer 的编码器层中,文本嵌入和每帧的视觉特征交换信息。然后,解码器层对每个输入帧提供N_q对象查询,查询与实体相关的多模态序列,并将其存储在对象查询中。该研究将这些查询(在图 1 和图 2 中由相同的唯一颜色和形状表示)称为属于同一实例序列的查询。这种设计允许自然跟踪视频中的每个对象实例。

输出生成。Transformer 输出的每个实例序列,将会生成一个对应的掩码序列。为了实现这一点,该研究使用了类似 FPN 的空间解码器和动态生成的条件卷积核。最后,该研究使用文本参考评分函数(text-reference score function),该函数基于掩码和文本关联,以确定哪个对象查询序列与 T 中描述的对象具有最强的关联,并将其分割序列作为模型的预测返回。

时间编码器。适合 RVOS 任务的时间编码器应该能够为视频中的每个实例提取视觉特征(例如,形状、大小、位置)和动作语义。相比之下,该研究使用端到端方法,不需要任何额外的掩码细化步骤,并使用单个主干就可完成。最近,研究者提出了 Video Swin Transformer [27] 作为 Swin Transformer 对视频领域的泛化。最初的 Swin 在设计时考虑了密集预测(例如分割), Video Swin 在动作识别基准上进行了大量测试。

据了解,该研究是第一个使用Video Swin (稍作修改)进行视频分割的。与 I3D 不同,Video Swin 仅包含一个时间下采样层,并且研究者可以轻松修改以输出每帧特征图。因此,Video Swin是处理完整的连续视频帧序列以进行分割的更好选择。

实例分割过程


实例分割过程如图 2 所示。



首先,给定 F_E,即最后一个 Transformer 编码器层输出的更新后的多模态序列,该研究提取每个序列的视频相关部分(即第一个 H × W token)并重塑为集合 。然后,该研究采用时间编码器的前 n − 1 个块的输出 ,并使用类似 FPN 的 [21] 空间解码器 G_Seg 将它们与 分层融合。这个过程产生了视频帧的语义丰富、高分辨率的特征图,表示为 F_Seg。

 
接下来,对于 Transformer 解码器输出的每个实例序列
,该研究使用两层感知器 G_kernel 生成相应的条件分割核序列。



最后,通过将每个分割核与其对应的帧特征进行卷积,为
生成一系列分割掩码 M,然后进行双线性上采样操作以将掩码大小调整为真实分辨率



实验


该研究在A2D-Sentences数据集上将MTTR与SOAT方法进行比较。结果如表 1所示,该方法在所有指标上都显着优于所有现有方法。

例如,该模型比当前SOTA模型提高了 4.3 mAP ,这证明了MTTR能够生成高质量的掩码。该研究还注意到,与当前SOTA技术相比,顶级配置(w = 10)的MTTR实现了 5.7 的 mAP 提高和 6.7% 的平均 IoU 和总体 IoU 的绝对改进。值得一提的是,这种配置能够在单个 RTX 3090 GPU 上每秒处理 76 帧的同时做到这一点。



按照之前的方法 [11, 24],该研究通过在没有微调的 JHMDBSentences 上评估模型的泛化能力。该研究从每个视频中统一采样三帧,并在这些帧上评估模型。如表2所示,MTTR方法具有很好的泛化性并且优于所有现有方法。

 
表3报告了在Refer-YouTube-VOS公共验证集上的结果。与现有方法[24,37]相比,这些方法是在完整数据集上进行训练和评估的,尽管该研究模型在较少的数据上进行训练,并专门在一个更具挑战性的子集上进行评估,但MTTR在所有指标上都表现出了卓越的性能。



如图 3 所示,MTTR 可以成功地跟踪和分割文本参考对象,即使在具有挑战性的情况下,它们被类似实例包围、被遮挡或在视频的广泛部分中完全超出相机的视野。


参考链接:https://www.reddit.com/r/MachineLearning/comments/t7qe6b/r_endtoend_referring_video_object_segmentation/

时在中春,阳和方起——机器之心AI科技年会


机器之 AI科技年会将于3月23日在北 京举办,在分享交流对人工智能的判断与思考外,更重要的是与读者、合作伙伴和好友们真实的见一面。

这是一次注重交流与见面的聚会,所以叫「年会」,没叫「大会」。

在这场年会上,有三个方向我们希望和大家分享:人工智能、AI for Science和智能汽车。

  • 人工智能论坛关注高性能计算、联邦学习、系统机器学习、强化学习、CV与NLP发展、RISC-V等。

  • AI x Science论坛关注AI与蛋白质、生物计算、数学、物理、化学、新材料和神经科学等领域的交叉研究进展。

  • 首席智行官大会关注智能汽车、汽车机器人、无人驾驶商业化、车规级芯片和无人物流等。

当然,按以往的惯例,我们还将邀请行业内最具代表性与专业的权威嘉宾带来他们的思考与判断。

欢迎大家点击「阅读原文」报名活动,「中春」见。


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
0

相关内容

CVPR2022 | 多模态Transformer用于视频分割效果惊艳
专知会员服务
40+阅读 · 2022年3月12日
【CVPR2022】高分辨率和多样化的视频-文本预训练模型
专知会员服务
9+阅读 · 2022年3月6日
【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
48+阅读 · 2021年12月20日
【NeurIPS2021】用于视频分割的密集无监督学习
专知会员服务
14+阅读 · 2021年11月14日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
【CVPR2021】基于Transformer的视频分割领域
专知
2+阅读 · 2021年4月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员