都说Transformer适合处理多模态任务。
这不,在视频目标分割领域,就有人用它同时处理文本和视帧,提出了一个结构更简单、处理速度更快(每秒76帧)的视频实例分割框架。
这个框架只需一串文本描述,就可以轻松将视频中的动态目标“抠”出来:
可以实现端到端训练的它,在基准测试中的多个指标上表现全部优于现有模型。
目前,相关论文已被CVPR 2022接收,研究人员来自以色列理工学院。
根据文本描述进行视频目标分割这一多模态任务(RVOS),需要结合文本推理、视频理解、实例分割和跟踪技术。
现有的方法通常依赖复杂的pipeline来解决,很难形成一个端到端的简便好用的模型。
随时CV和NLP领域的发展,研究人员意识到,视频和文本可以同时通过单个多模态Transformer模型进行有效处理。
为此,他们提出了这个叫做MTTR (Multimodal Tracking Transformer)的新架构,将RVOS任务建模为序列(sequence)预测问题。
首先,输入的文本和视频帧被传递给特征编码器进行特征提取,然后将两者连接成多模态序列(每帧一个)。
接着,通过多模态Transformer对两者之间的特征关系进行编码,并将实例级(instance-level )特征解码为一组预测序列。
接下来,生成相应的mask和参考预测序列。
最后,将预测序列与基准(ground truth,在有监督学习中通常指代样本集中的标签)序列进行匹配,以供训练过程中的监督或用于在推理过程中生成最终预测。
具体来说,对于Transformer输出的每个实例序列,系统会生成一个对应的mask序列。
为了实现这一点,作者采用了类似FPN(特征金字塔网络)的空间解码器和动态生成的条件卷积核。
而通过一个新颖的文本参考分数函数,该函数基于mask和文本关联,就可以确定哪个查询序列与文本描述的对象具有最强的关联,然后返回其分割序列作为模型的预测。
作者在三个相关数据集上对MTTR进行了性能测试:JHMDB-Sentences、 A2D-Sentences和Refer-YouTube-VOS。
前两个数据集的衡量指标包括IoU(交并比,1表示预测框与真实边框完全重合)、平均IoU和precision@K(预测正确的相关结果占所有结果的比例)。
结果如下:
可以看到,MTTR在所有指标上都优于所有现有方法,与SOTA模型相比,还在第一个数据集上提高了4.3的mAP值(平均精度)。
顶配版MTTR则在平均和总体IoU指标上实现了5.7的mAP增益,可以在单个RTX 3090 GPU上实现每秒处理76帧图像。
MTTR在JHMDBs上的结果表明MTTR也具备良好的泛化能力。
更具挑战性的Refer-YouTube-VOS数据集的主要评估指标为区域相似性(J)和轮廓精度(F)的平均值。
MTTR在这些指标上全部“险胜”。
一些可视化结果表明,即使在目标对象被类似实例包围、被遮挡或完全超出画面等情况下,MTTR都可以成功地跟踪和分割文本引用的对象。
最后,作者表示,希望更多人通过这项成果看到Transformer在多模态任务上的潜力。
最最后,作者也开放了两个试玩通道,感兴趣的同学可以戳文末链接~
试玩地址:
https://huggingface.co/spaces/akhaliq/MTTR
https://colab.research.google.com/drive/12p0jpSx3pJNfZk-y_L44yeHZlhsKVra-?usp=sharing
论文地址:
https://arxiv.org/abs/2111.14821
代码已开源:
https://github.com/mttr2021/MTTR
— 完 —
「人工智能」、「智能汽车」微信社群邀你加入!
欢迎关注人工智能、智能汽车的小伙伴们加入我们,与AI从业者交流、切磋,不错过最新行业发展&技术进展。
ps.加好友请务必备注您的姓名-公司-职位哦~
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
科技前沿进展日日相见~