新智元报道
编辑:QJP
过去11年中用于解释神经网络的最新方法是如何发展的呢?
本文在 Inception 网络图像分类器上尝试使用引导反向传播进行解释演示。
为什么「解释」很重要?
使用机器学习(ML)算法(尤其是现代深度学习)进行图像识别的最大挑战之一,是难以理解为什么一个特定的输入图像会产生它所预测的结果。
ML模型的用户通常想了解图像的哪些部分是预测中的重要因素。这些说明或“解释”之所以有价值,有很多原因:
因此,至少从2009年开始,研究人员就开发了许多不同的方法来打开深度学习的“黑匣子”,从而使基础模型更容易解释。
下面,我们为过去十年中最先进的图像解释技术整合了视觉界面,并对每种技术进行了简要描述。
我们使用了许多很棒的库,但是特别依赖 Gradio 来创建你在下面的 gif 文件和 PAIR-code 的 TensorFlow 实现中看到的接口。
用于所有接口的模型是Inception Net图像分类器,可以在此jupyter笔记本和Colab上找到复制此博客文章的完整代码。
在我们深入研究论文之前,让我们先从一个非常基本的算法开始。
七种不同的解释方法
Leave-one-out (LOO)
Leave-one-out (LOO) 是最容易理解的方法之一。如果你想了解图像的哪个部分负责预测,这可能会是你想到的第一个算法。
其思想是首先将输入图像分割成一组较小的区域,然后,运行多个预测,每次都屏蔽一个区域。根据每个区域的「被屏蔽」对输出的影响程度,为每个区域分配一个重要性分数。这些分数是对哪个区域最负责预测的量化。
这种方法很慢,因为它依赖于运行模型的许多迭代,但是它可以生成非常准确和有用的结果。上面是杜宾狗的图片示例。
LOO是Gradio库中的默认解释技术,完全不需要访问模型的内部——这是一个很大的优点。
Vanilla Gradient Ascent [2009 and 2013]
Paper: Visualizing Higher-Layer Features of a Deep Network [2009]
Paper: Visualizing Image Classification Models and Saliency Maps [2013]
这两篇论文的相似之处在于,它们都通过使用梯度上升来探索神经网络的内部。换句话说,它们认为对输入或激活的微小更改将增加预测类别的可能性。
第一篇论文将其应用于激活,作者报告说,「有可能找到对高级特征的良好定性解释, 我们证明,也许是违反直觉的,但这种解释在单位水平上是可能的,它很容易实现,并且各种技术的结果是一致的。」
第二种方法也采用梯度上升,但是直接对输入图像的像素点进行探测,而不是激活。
作者的方法「计算特定于给定图像和类的类显着性图,这样的地图可以使用分类ConvNets用于弱监督的对象分割。」
Guided Back-Propogation [2014]
Paper: Striving for Simplicity: The All Convolutional Net [2014]
本文提出了一种新的完全由卷积层构成的神经网络。由于以前的解释方法不适用于他们的网络,因此他们引入了引导式反向传播。
该反向传播可在进行标准梯度上升时过滤掉传播时产生的负激活。作者称,他们的方法「可以应用于更广泛的网络结构。」
Grad-CAM [2016]
Paper: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [2016]
接下来是梯度加权类激活映射(gradient-weighted class activation mapping,Grad-CAM) 。它利用「任何目标概念的梯度,流入最后的卷积层,生成一个粗糙的定位映射,突出图像中的重要区域,以预测概念。」
该方法的主要优点是进一步推广了可以解释的神经网络类(如分类网络、字幕和可视化问答(VQA)模型) ,以及一个很好的后处理步骤,围绕图像中的关键对象对解释进行集中和定位。
SmoothGrad [2017]
Paper: SmoothGrad: removing noise by adding noise [2017]
像前面的论文一样,此方法从计算类评分函数相对于输入图像的梯度开始。
但是,SmoothGrad通过在输入图像中添加噪声,然后针对图像的这些扰动版本中的每一个来计算梯度,从而在视觉上锐化这些基于梯度的灵敏度图。将灵敏度图平均在一起可以得到更清晰的结果。
Integrated Gradients [2017]
Paper: Axiomatic Attribution for Deep Networks [2017]
不同于以往的论文,本文的作者从解释的理论基础入手。它们「确定了归因方法应该满足的两个基本公理——敏感性和实现不变性」。
他们用这些原理来指导设计一种新的归属方法(称为综合梯度),该方法可以产生高质量的解释,同时仍然只需要访问模型的梯度; 但是它添加了一个「基线」超参数,这可能影响结果的质量。
Blur Integrated Gradients [2020]
Paper: Attribution in Scale and Space [2020]
论文研究了一个最新技术---- 这种方法被提出来用于解决具体的问题,包括消除「基线」参数,移除某些在解释中倾向于出现的视觉伪影。
此外,它还「在尺度/频率维度上产生分数」,本质上提供了图像中重要物体的尺度感。
下面这张图比较了所有这些方法:
参考链接:
https://gradio.app/blog/interpretation-history
https://github.com/gradio-app/history-of-interpretation/blob/master/History-of-Interpretation.ipynb