从图像中提取出有意义、有实用价值的信息。

图像识别 Image Recognition 专知荟萃

入门学习

  1. 如何识别图像边缘?  阮一峰
  2. CS231n课程笔记翻译:图像分类笔记
  3. 深度学习、图像分类入门,从VGG16卷积神经网络开始 [http://blog.csdn.net/Errors_In_Life/article/details/65950699]
  4.  The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) 翻译
  5. 深度学习框架Caffe图片分类教程
  6. MobileNet教程:用TensorFlow搭建在手机上运行的图像分类器
  7. 图像验证码和大规模图像识别技术
  8. 卷积神经网络如何进行图像识别
  9. 图像识别与验证码
  10. 图像识别(知乎话题) - [https://www.zhihu.com/topic/19588774/top-answers?page=1]

综述

  1. A Review of Image Recognition with Deep Convolutional Neural Network
  2. Review on Image Recognition
  3. 深度学习在图像识别中的研究进展与展望
  4. 图像物体分类与检测算法综述 黄凯奇 任伟强 谭铁牛 [http://cjc.ict.ac.cn/online/cre/hkq-2014526115913.pdf]
  5. Book Chapter - Objecter Recognition

进阶文章

Imagenet result

  1. Microsoft (Deep Residual Learning] [http://arxiv.org/pdf/1512.03385v1.pdf]][[Slide](http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385.
  2. Microsoft (PReLu/Weight Initialization] [http://arxiv.org/pdf/1502.01852] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852.
  3. Batch Normalization [http://arxiv.org/pdf/1502.03167] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167.
  4. GoogLeNet [http://arxiv.org/pdf/1409.4842] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, CVPR, 2015.
  5. VGG-Net [http://www.robots.ox.ac.uk/~vgg/research/very_deep/] [http://arxiv.org/pdf/1409.1556] Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Visual Recognition, ICLR, 2015.
  6. AlexNet [http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.

2013

  1. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, Trevor Darrell

2014

  1. CNN Features off-the-shelf: an Astounding Baseline for Recognition CVPR 2014
  2. Deeply learned face representations are sparse, selective, and robust
  3. Deep Learning Face Representation by Joint Identification-Verification
    - [https://arxiv.org/abs/1406.4773]
  4. Deep Learning Face Representation from Predicting 10,000 Classes. intro: CVPR 2014
  5. Multiple Object Recognition with Visual Attention**

2015

  1. HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification intro: ICCV 2015
  2. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ImageNet top-5 error: 4.94%
  3. Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios
  4. FaceNet: A Unified Embedding for Face Recognition and Clustering

2016

  1. Humans and deep networks largely agree on which kinds of variation make object recognition harder**
  2. FusionNet: 3D Object Classification Using Multiple Data Representations
  3. Deep FisherNet for Object Classification**
  4. Factorized Bilinear Models for Image Recognition**
  5. Hyperspectral CNN Classification with Limited Training Samples**
  6. The More You Know: Using Knowledge Graphs for Image Classification**
  7. MaxMin Convolutional Neural Networks for Image Classification**
  8. Cost-Effective Active Learning for Deep Image Classification. TCSVT 2016.
  9. DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment

2017

  1. Deep Collaborative Learning for Visual Recognition
  2. Bilinear CNN Models for Fine-grained Visual Recognition
  3. Multiple Instance Learning Convolutional Neural Networks for Object Recognition**
  4. B-CNN: Branch Convolutional Neural Network for Hierarchical Classification
  5. Why Do Deep Neural Networks Still Not Recognize These Images?: A Qualitative Analysis on Failure Cases of ImageNet Classification
  6. Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
  7. Convolutional Low-Resolution Fine-Grained Classification

Tutorial

  1. CVPR tutorial : Large-Scale Visual Recognition
  2. Image Recognition with Tensorflow
  3. Visual Object Recognition Tutorial by Bastian Leibe & Kristen Grauman

视频教程

  1. CS231n: Convolutional Neural Networks for Visual Recognition
  2. 李飞飞: 我们怎么教计算机理解图片?
    - [https://www.youtube.com/watch?v=40riCqvRoMs]

Datasets

  1. MNIST: handwritten digits (http://yann.lecun.com/exdb/mnist/)
  2. NIST: similar to MNIST, but larger
  3. Perturbed NIST: a dataset developed in Yoshua’s class (NIST with tons of deformations)
  4. CIFAR10 / CIFAR100: 32×32 natural image dataset with 10/100 categories ( http://www.cs.utoronto.ca/~kriz/cifar.html)
  5. Caltech 101: pictures of objects belonging to 101 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech101/)
  6. Caltech 256: pictures of objects belonging to 256 categories (http://www.vision.caltech.edu/Image_Datasets/Caltech256/
  7. Caltech Silhouettes: 28×28 binary images contains silhouettes of the Caltech 101 dataset
  8. STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 dataset but with some modifications. http://www.stanford.edu/~acoates//stl10/
  9. The Street View House Numbers (SVHN) Dataset – http://ufldl.stanford.edu/housenumbers/
  10. NORB: binocular images of toy figurines under various illumination and pose (http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/)
  11. Imagenet: image database organized according to the WordNethierarchy (http://www.image-net.org/)
  12. Pascal VOC: various object recognition challenges (http://pascallin.ecs.soton.ac.uk/challenges/VOC/)
  13. Labelme: A large dataset of annotated images, http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
  14. COIL 20: different objects imaged at every angle in a 360 rotation(http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php)
  15. COIL100: different objects imaged at every angle in a 360 rotation (http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php)

代码

  1. AlexNet 
  2. ZFnet [https://github.com/rainer85ah/Papers2Code/tree/master/ZFNet]
  3. VGG
  4. GoogLeNet [https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet]
  5. ResNet
  6. HD-CNN
  7. Factorized Bilinear Models for Image Recognition
  8. MaxMin Convolutional Neural Networks for Image Classification
  9. Multiple Object Recognition with Visual Attention
  10. Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification
  11. Deep Learning Face Representation from Predicting 10,000 Classes
  12. FaceNet: A Unified Embedding for Face Recognition and Clustering
  13. DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment

领域专家

  1. Yangqing Jia
  2. Ross Girshick
  3. Xiaodi Hou
  4. Kaiming He
  5. Jian Sun
  6. Xiaoou Tang
  7. Shuicheng Yan

初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)

敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识

成为VIP会员查看完整内容
微信扫码咨询专知VIP会员