1块GPU+几行代码,大模型训练提速40%!无缝支持HuggingFace,来自国产开源项目

2022 年 7 月 13 日 量子位
明敏 发自 凹非寺
量子位 | 公众号 QbitAI

不得不说,为了让更多人能用上大模型,技术圈真是各出奇招!

模型不够开放?有人自己上手搞免费开源版。

比如最近风靡全网的DALL·E Mini,Meta开放的OPT-175B(Open Pretrained Transformer)

都是通过复刻的方式,让原本不够open的大模型,变成人人可用

还有人觉得模型太大,个人玩家很难承受起天价成本。

所以提出异构内存、并行计算等方法,让大模型训练加速又降本。

比如开源项目Colossal-AI,前不久刚实现了让一块英伟达3090就能单挑180亿参数大模型

而在这两天,他们又来了一波上新:

无缝支持Hugging Face社区模型,只需添加几行代码,就能实现大模型的低成本训练和微调。

要知道,Hugging Face作为当下最流行的AI库之一,提供了超过5万个AI模型的实现,是许多AI玩家训练大模型的首选。

而Colossal-AI这波操作,是让公开模型的训练微调变得更加切实可行。

并且在训练效果上也有提升。

单张GPU上,相比于微软的DeepSpeed,使用Colossal-AI的自动优化策略,最快能实现40%的加速。

而PyTorch等传统深度学习框架,在单张GPU上已经无法运行如此大的模型。

对于使用8张GPU的并行训练,仅需在启动命令中添加-nprocs 8就能实现。

这波下来,可以说是把个人AI玩家需要考虑的成本、效率、实操问题,都拿捏住了~

无需修改代码逻辑

光说不练假把式。

下面就以OPT为例,详细展开看看Colossal-AI的新功能到底怎么用。

OPT,全称为Open Pretrained Transformer。

它由Meta AI发布,对标GPT-3,最大参数量可达1750亿。

最大特点就是,GPT-3没有公开模型权重,而OPT开源了所有代码及权重。

因此,每一位开发者都能在此基础上开发个性化的下游任务。

下面的举例,就是根据OPT提供的预训练权重,进行因果语言模型(Casual Language Modelling)的微调。

主要分为两个步骤:

  • 添加配置文件

  • 运行启动

第一步,是根据想进行的任务添加配置文件。

比如在一张GPU上,以异构训练为例,只需在配置文件里加上相关配置项,并不需要更改代码的训练逻辑。

比如,tensor_placement_policy决定了异构训练的策略,参数可以为CUDA、CPU及auto。

每个策略的优点不同、适应的情况也不一样。

CUDA:将全部模型参数都放置于GPU上,适合不offload时仍然能进行训练的传统场景

CPU:将模型参数都放置在CPU内存中,仅在GPU显存中保留当前参与计算的权重,适合超大模型的训练。

auto:根据实时的内存信息,自动决定保留在GPU显存中的参数量,这样能最大化利用GPU显存,同时减少CPU-GPU之间的数据传输。

对于普通用户来说,使用auto策略是最便捷的。

这样可以由Colossal-AI自动化地实时动态选择最佳异构策略,最大化计算效率。

from colossalai.zero.shard_utils import TensorShardStrategy
zero = dict(model_config=dict(shard_strategy=TensorShardStrategy(), tensor_placement_policy="auto"), optimizer_config=dict(gpu_margin_mem_ratio=0.8))

第二步,是在配置文件准备好后,插入几行代码来启动新功能。

首先,通过一行代码,使用配置文件来启动Colossal-AI。

Colossal-AI会自动初始化分布式环境,读取相关配置,然后将配置里的功能自动注入到模型及优化器等组件中。

colossalai.launch_from_torch(config='./configs/colossalai_zero.py')

然后,还是像往常一样定义数据集、模型、优化器、损失函数等。

比如直接使用原生PyTorch代码,在定义模型时,只需将模型放置于ZeroInitContext下初始化即可。

在这里,使用的是Hugging Face提供的OPTForCausalLM模型以及预训练权重,在Wikitext数据集上进行微调。

with ZeroInitContext(target_device=torch.cuda.current_device(),                     shard_strategy=shard_strategy,                    shard_param=True):    model = OPTForCausalLM.from_pretrained(                'facebook/opt-1.3b'                config=config            )

接下来,只需要调用colossalai.initialize,便可将配置文件里定义的异构内存功能统一注入到训练引擎中,即可启动相应功能。

engine, train_dataloader, eval_dataloader, lr_scheduler = colossalai.initialize(model=model,                                                                               optimizer=optimizer,                                                                               criterion=criterion,                                                                               train_dataloader=train_dataloader,                                                                               test_dataloader=eval_dataloader,                                                                               lr_scheduler=lr_scheduler)

还是得靠GPU+CPU异构

而能够让用户实现如上“傻瓜式”操作的关键,还是AI系统本身要足够聪明。

发挥核心作用的是Colossal-AI系统的高效异构内存管理子系统Gemini

它就像是系统内的一个总管,在收集好计算所需的信息后,动态分配CPU、GPU的内存使用。

具体工作原理,就是在前面几个step进行预热,收集PyTorch动态计算图中的内存消耗信息。

在预热结束后,计算一个算子前,利用收集的内存使用记录,Gemini将预留出这个算子在计算设备上所需的峰值内存,并同时从GPU显存移动一些模型张量到CPU内存。

Gemini内置的内存管理器给每个张量都标记一个状态信息,包括HOLD、COMPUTE、FREE等。

然后,根据动态查询到的内存使用情况,不断动态转换张量状态、调整张量位置。

带来的直接好处,就是能在硬件非常有限的情况下,最大化模型容量和平衡训练速度。

要知道,业界主流方法ZeRO (Zero Reduency Optimizer),尽管也利用CPU+GPU异构内存的方法,但是由于是静态划分,还是会引起系统崩溃、不必要通信量等问题。

而且,使用动态异构CPU+GPU内存的办法,还能用加内存条的办法来扩充内存。

怎么也比买高端显卡划算多了。

目前,使用Colossal-AI的方法,RTX 2060 6GB普通游戏本能训练15亿参数模型;RTX 3090 24GB主机直接单挑180亿参数大模型;Tesla V100 32GB连240亿参数都能拿下。

除了最大化利用内存外,Colossal-AI还使用分布式并行的方法,让训练速度不断提升。

它提出同时使用数据并行、流水并行、2.5维张量并行等复杂并行策略

方法虽复杂,但上手却还是非常“傻瓜操作”,只需简单声明,就能自动实现。

无需像其他系统和框架侵入代码,手动处理复杂的底层逻辑。

parallel = dict(    pipeline=2,    tensor=dict(mode='2.5d', depth = 1, size=4))

Colossal-AI还能做什么?

实际上,自开源以来,Colossal-AI已经多次在GitHub及Papers With Code热榜位列世界第一,在技术圈小有名气。

除了如上提到的用单张GPU训练大模型外,Colossal-AI在扩展至数十张甚至数百张GPU的大规模并行场景时,相比于英伟达Megatron-LM等现有系统,性能可以翻倍,使用资源可以降低至其十分之一之下。

换算一下,在预训练GPT-3等超大AI模型上,节省的费用可以达到数百万元。

据透露,Colossal-AI相关的解决方案已经被自动驾驶、云计算、零售、医药、芯片等行业的知名厂商用上了。

与此同时,他们也非常注重开源社区建设,提供中文教程、开放用户社群论坛,根据大家的需求反馈不断更新迭代。

比如我们发现,之前有粉丝留言询问,Colossal-AI能否直接加载Hugging Face上的一些模型?

好嘛,这次更新就来了。

所以,对于大模型训练,你觉得现在还有哪些难点亟需解决呢?

欢迎评论区留言讨论~

传送门

项目地址:https://github.com/hpcaitech/ColossalAI

参考链接:
[1]https://medium.com/@yangyou_berkeley/colossal-ai-seamlessly-accelerates-large-models-at-low-costs-with-hugging-face-4d1a887e500d

[2]https://arxiv.org/abs/2202.05924v2
[3]https://arxiv.org/abs/2205.11487
[4]https://github.com/features/copilot
[5]https://github.com/huggingface/transformers

「人工智能」、「智能汽车」微信社群邀你加入!

欢迎关注人工智能、智能汽车的小伙伴们加入我们,与AI从业者交流、切磋,不错过最新行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
1

相关内容

大模型是基于海量多源数据打造的预训练模型,是对原有算法模型的技术升级和产品迭代,用户可通过开源或开放API/工具等形式进行模型零样本/小样本数据学习,以实现更优的识别、理解、决策、生成效果和更低成本的开发部署方案。
专知会员服务
21+阅读 · 2021年8月10日
专知会员服务
44+阅读 · 2020年3月6日
【GitHub实战】Pytorch实现的小样本逼真的视频到视频转换
专知会员服务
35+阅读 · 2019年12月15日
谷歌&HuggingFace| 零样本能力最强的语言模型结构
夕小瑶的卖萌屋
0+阅读 · 2022年6月23日
计图:5秒训好NeRF!已开源
量子位
5+阅读 · 2022年6月5日
如何提升大规模Transformer的训练效果?Primer给出答案
夕小瑶的卖萌屋
0+阅读 · 2021年10月29日
盘点来自工业界的GPU共享方案
计算机视觉life
12+阅读 · 2021年9月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月13日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Top
微信扫码咨询专知VIP会员