点击上方“计算机视觉life”,选择“星标”
快速获得最新干货
标题:最新开源LiDAR数据集LSOOD:四种常见的室外物体分类
作者:Y Tian
来源:https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset
LSOOD数据集
LSOOD数据集(LiDAR Scanning Outdoor Object Dataset)由Velodyne32线激光雷达设备采集,包含四种常见的室外障碍物(行人、建筑、树木和灌木),可用于无人驾驶、遥感等领域的分类器训练。
由于现存的LiDAR扫描的物体分类数据集较少,较为知名的悉尼城市物体(Sydney Urban)数据集样本量小且种类较多,performance的提升难度较大。因此,LSOOD数据集更适合广大初学者,简单易懂的开始LiDAR物体分类的研究和学习。
该数据集从多个场景的中采集,例如道路,十字路口等。利用快速的空间聚类算法(Fast Spatial Clustering Method),将场景点云进行快速的实例分割,形成大量独立的物体点云。该算法在实例分割的过程中,每帧点云的处理速度为30ms左右。
由于LiDAR生成的点云数据具有稀疏、无纹理信息的特点,为了更加准确地判定物体的种类,该团队开发了如下图所示的半自动样本标记工具,结合障碍物周围的场景信息,提升障碍物的人工标签准确率。为了提升数据库中的点云样本质量,已将存在遮挡、结构不完整的点云样本剔除,尽可能保留结构较为完整的物体点云。
LSOOD数据集现有1056个障碍物样本,训练样本530个,测试样本526个。相较于现存的室外雷达点云分类公开数据集,LSOOD具有单个种类样本量大,点云样本质量较高,训练、测试集相对平衡等优势,易于初学者进行点云分类任务学习。不同于CAD模型生成的标准点云物体(如经典的ModelNet10/40),LSOOD数据集为LiDAR在真实场景下扫描得到,更适合应用于无人驾驶、智能机器人、遥感等多种领域。
目前LSOOD数据集包含建筑样本335,灌木223,行人83,及乔木415个。后续将公开更多的样本及分类类别。
LSOOD数据集中点云样本存储在.csv文件,每个.csv文件存储了不同的物体信息,包含了物体点云的x,y,z全局坐标(origin),物体中心为原点的局部坐标(relative),以及对象标签(object)。
LSOOD数据集可从github下载:
https://github.com/Tian-Yifei/LSOOD-LiDAR-Scanning-Outdoor-Object-Dataset
如果对实例分割的算法(快速的空间聚类)或物体标签标记工具感兴趣,具体细节请参考下述文章:
Y Tian, W Song, L Chen, et al., A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming, Sensors 20 (8), 2309
W Song, L Zhang, Y Tian, et al., CNN-based 3D object classification using Hough space of LiDAR point clouds, Human-centric Computing and Information Sciences 10 (1), 1-14
从0到1学习SLAM,戳↓
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
投稿、合作也欢迎联系:simiter@126.com
扫描关注视频号,看最新技术落地及开源方案视频秀 ↓