本文为你整理周志华教授的角度深度神经网络之所以获得成功的本质因素,找到神经网络之外的其它的深度模型。 8 月 10 日至 16 日,IJCAI 2019 在中国澳门隆重召开。14 日下午,南京大学周志华教授进行特邀大会演讲,演讲主题是《Deep Learning: Why deep and is it only doable for neural networks?》。在演讲中,周志华教授从自己的角度解读了深度神经网络之所以获得成功的本质因素,以及如何在兼顾这些因素的同时,找到神经网络之外的其它的深度模型。
那么,有没有可能做出合适的深度模型,在这些任务上得到更好的性能呢? 我们从学术的观点来总结一下,今天我们谈到的深度模型基本上都是深度神经网络。如果用术语来说的话,它是多层、可参数化的、可微分的非线性模块所组成的模型,而这个模型可以用 BP 算法来训练。 那么这里面有两个问题。第一,我们现实世界遇到的各种各样的问题的性质,并不是绝对都是可微的,或者用可微的模型能够做最佳建模的。第二,过去几十年里面,我们的机器学习界做了很多模型出来,这些都可以作为我们构建一个系统的基石,而中间有相当一部分模块是不可微的。 现在我们遇到了这样一个大挑战,可不可以用不可微的模块构建深度模型?这不光是学术上的,也是技术上的一个挑战,就是我们能不能用不可微的模块来构建深度模型? 这个问题一旦得到了回答,我们同时就可以得到很多其他问题的答案。比如说深度模型是不是就是深度神经网络?我们能不能用不可微的模型把它做深,这个时候我们不能用 BP 算法来训练,那么同时我们能不能让深度模型在更多的任务上获胜?