学界 | 华盛顿大学推出YOLOv3:检测速度快SSD和RetinaNet三倍(附实现)

2018 年 3 月 27 日 机器之心

选自pjreddie

作者:Joseph Redmon、Ali Farhadi

机器之心编译


近日,来自华盛顿大学的 Joseph Redmon 和 Ali Farhadi 提出 YOLO 的最新版本 YOLOv3。通过在 YOLO 中加入设计细节的变化,这个新模型在取得相当准确率的情况下实现了检测速度的很大提升,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。机器之心对论文进行了编译,实现和视频 demo 详见文中。


代码地址:https://pjreddie.com/yolo/.




1. 引言


有时,你一整年全在敷衍了事而不自知。比如今年我就没做太多研究,在推特上挥霍光阴,置 GANs 于不顾。凭着上年余留的一点动力,我成功对 YOLO 做了一些升级。但实话讲,没什么超有趣的东西,只不过是些小修小补。同时我对其他人的研究也尽了少许绵薄之力。


于是就有了今天的这篇论文。我们有一个最终截稿日期,需要随机引用 YOLO 的一些更新,但是没有资源。因此请留意技术报告。


技术报告的优势在于其不需要介绍,你自然知道来由。因此简介的最后将为余文提供路标。首先我将介绍 YOLOv3 的结局方案;接着是其实现。我们也会介绍一些失败案例。最后是本文的总结与思考。


2. 解决方案


这一部分主要介绍了 YOLOv3 的解决方案,我们从其他研究员那边获取了非常多的灵感。我们还训练了一个非常优秀的分类网络,因此原文章的这一部分主要从边界框的预测、类别预测和特征抽取等方面详细介绍整个系统。


简而言之,YOLOv3 的先验检测(Prior detection)系统将分类器或定位器重新用于执行检测任务。他们将模型应用于图像的多个位置和尺度。而那些评分较高的区域就可以视为检测结果。


此外,相对于其它目标检测方法,我们使用了完全不同的方法。我们将一个单神经网络应用于整张图像,该网络将图像划分为不同的区域,因而预测每一块区域的边界框和概率,这些边界框会通过预测的概率加权。


我们的模型相比于基于分类器的系统有一些优势。它在测试时会查看整个图像,所以它的预测利用了图像中的全局信息。与需要数千张单一目标图像的 R-CNN 不同,它通过单一网络评估进行预测。这令 YOLOv3 非常快,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。


图 1:我们从 Focal Loss 论文 [7] 中采用了这张图。YOLOv3 在实现相同准确度下要显著地比其它检测方法快。时间都是在采用 M40 或 Titan X 等相同 GPU 下测量的。


图 2:带有维度先验和定位预测的边界框。我们边界框的宽和高以作为离聚类中心的位移,并使用 Sigmoid 函数预测边界框相对于滤波器应用位置的中心坐标。


表 1:Darknet-53 网络架构。


表 2:主干架构的性能对比:准确率(top-1 误差、top-5 误差)、运算次数(/十亿)、每秒浮点数运算次数(/十亿),以及 FPS 值。


表 3:该表来自 [7]。从中看出,YOLOv3 表现得不错。RetinaNet 需要大约 3.8 倍的时间来处理一张图像,YOLOv3 相比 SSD 变体要好得多,并在 AP_50 指标上和当前最佳模型有得一拼。


图 3:也是借用了 [7] 中的图,展示了以.5 IOU 指标的速度/准确率权衡过程(mAP vs 推断时间)。从图中可以看出 YOLOv3 准确率高,速度也快。


最后,机器之心也尝试使用预训练的 YOLOv3 执行目标检测,在推断中,模型需要花 1s 左右加载模型与权重,而后面的预测与图像本身的像素大小有非常大的关系。因此,吃瓜小编真的感觉 YOLOv3 很快哦。



论文:YOLOv3: An Incremental Improvement



论文链接:https://pjreddie.com/media/files/papers/YOLOv3.pdf


摘要:我们在本文中提出 YOLO 的最新版本 YOLOv3。我们对 YOLO 加入了许多设计细节的变化,以提升其性能。这个新模型相对更大但准确率更高。不用担心,它依然非常快。对于 320x320 的图像,YOLOv3 可以达到 22ms 的检测速度,获得 28.2mAP 的性能,与 SSD 的准确率相当但是速度快 3 倍。当我们使用旧版.5 IOU mAP 检测指标时,YOLOv3 是非常不错的。它在一块 TitanX 上以 51ms 的速度达到了 57.9 AP_50 的性能,而用 RetinaNet 则以 198ms 的速度获得 57.5 AP_50 的性能,性能相近但快了 3 倍。



本文为机器之心编译,转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者/实习生):hr@jiqizhixin.com

投稿或寻求报道:editor@jiqizhixin.com

广告&商务合作:bd@jiqizhixin.com

登录查看更多
7

相关内容

YOLO是快速的端到端的目标检测深度网络

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
31+阅读 · 2020年4月24日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
CVPR 2019 | CSP行人检测:无锚点框的检测新思路
机器之心
3+阅读 · 2019年4月13日
从YOLOv1到YOLOv3,目标检测的进化之路
AI100
9+阅读 · 2018年6月4日
从零开始PyTorch项目:YOLO v3目标检测实现
机器之心
14+阅读 · 2018年4月23日
YOLO升级到v3版,检测速度比R-CNN快1000倍
人工智能头条
10+阅读 · 2018年3月28日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
YOLOv3:你一定不能错过
机器学习研究会
13+阅读 · 2018年3月26日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
8+阅读 · 2018年4月8日
Arxiv
8+阅读 · 2018年1月12日
Arxiv
7+阅读 · 2017年12月26日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关资讯
CVPR 2019 | CSP行人检测:无锚点框的检测新思路
机器之心
3+阅读 · 2019年4月13日
从YOLOv1到YOLOv3,目标检测的进化之路
AI100
9+阅读 · 2018年6月4日
从零开始PyTorch项目:YOLO v3目标检测实现
机器之心
14+阅读 · 2018年4月23日
YOLO升级到v3版,检测速度比R-CNN快1000倍
人工智能头条
10+阅读 · 2018年3月28日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
YOLOv3:你一定不能错过
机器学习研究会
13+阅读 · 2018年3月26日
Top
微信扫码咨询专知VIP会员