©PaperWeekly 原创 · 作者|张玮玮
学校|东北大学硕士生
研究方向|情绪识别
生理学研究表明精神分裂症(Schizophrenia, SZ)与大脑感觉和额叶区功能障碍有关。患者脑电图(EEG)微观状态呈现前端-中心分布缩短,与记忆障碍相关的 theta 和 gamma 频段脑电图振荡异常。
论文设计了一种新颖的深度 CNN 架构,称为多域连接 CNN (multi-domain connectome CNN, MDC-CNN),它可以融合时域、频域和脑连接网络的拓扑度量对 SZ 患者识别。
首次利用具有大脑区域间信息流动方向性的功能连接(Functional Connectivity, FC)特征,作为 CNN 中 SZ 自动分类的判别特征。利用脑电图中估计的各种定向连通性,以捕获 SZ 中被破坏的大脑网络组织。
作者使用 VAR、PDC、CN 特征和所有三个特征集的融合测量脑电图连接模式,对 SZ 和健康组(healthy control,HC)分类时的卓越性能验证了所提出的 MDC-CNN 有效性。
▲ 图1. 基于MDC-CNN的脑电图连通性模式分类框架
如图 1 所示,网络包括两个阶段:连通特征提取和基于 CNN 的分类。在第一个阶段,从多通道脑电图提取各种衡量定向大脑连接特征:时域 VAR 系数,频域 PDC 和基于拓扑的复杂网络(complex network, CN)度量。在第二阶段,提取不同领域的连通特征,然后将其作为深度 CNN 分类器集成的输入。
二维连通矩阵即将 L 阶滞后的 VAR 系数矩阵和 5 个主频带的 PDC 矩阵构造成一个三维张量,作为二维 CNN 模型的输入。将五个频带上连接 CN 特征的一维向量形成二维张量,作为一维的输入。CNN 的卷积层将在连通性特征中进一步学习空间结构的更高层次特征。
▲ 图2. MDC-CNN模型采用不同的融合策略
▲ 图3. 训练过程中交叉熵损失的学习曲线
▲ 表1. 不同脑电图连接特征利用CNN与SVM方法在SZ和HC分类中的性能比较
▲ 表2. 利用PDC和CN连接特征对不同脑电图频带的CNN分类性能
▲ 表3. MDC-CNN在不同融合策略下的性能
点击以下标题查看更多往期内容:
#投 稿 通 道#
让你的论文被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得或技术干货。我们的目的只有一个,让知识真正流动起来。
📝 来稿标准:
• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向)
• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接
• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志
📬 投稿邮箱:
• 投稿邮箱:hr@paperweekly.site
• 所有文章配图,请单独在附件中发送
• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧
关于PaperWeekly
PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。
▽ 点击 | 阅读原文 | 下载论文