目标检测回归损失函数简介:SmoothL1/IoU/GIoU/DIoU/CIoU Loss

2020 年 2 月 3 日 CVer

点击上方“CVer”,选择加"星标"或“置顶”

重磅干货,第一时间送达

本文转载自:极市平台  作者:CrazyVertigo  

目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是Smooth L1 Loss    IoU Loss    GIoU Loss     DIoU Loss     CIoU Loss,本文按照此路线进行讲解。


1. Smooth L1 Loss


  • 本方法由微软rgb大神提出,Fast RCNN论文提出该方法


1.1 假设x为预测框和真实框之间的数值差异,常用的L1和L2 Loss定义为:





1.2 上述的3个损失函数对x的导数分别为:




从损失函数对x的导数可知:   损失函数对x的导数为常数,在训练后期,x很小时,如果learning rate 不变,损失函数会在稳定值附近波动,很难收敛到更高的精度。    损失函数对x的导数在x值很大时,其导数也非常大,在训练初期不稳定。    完美的避开了       损失的缺点。


1.3  实际目标检测框回归任务中的损失loss为:



其中    表示GT 的框坐标,      表示预测的框坐标,即分别求4个点的loss,然后相加作为Bounding Box Regression Loss。


三种loss的曲线图如图所示,可以看到Smooth L1相比L1的曲线更加的Smooth

缺点:


  • 上面的三种Loss用于计算目标检测的Bounding Box Loss时,独立的求出4个点的Loss,然后进行相加得到最终的Bounding Box Loss,这种做法的假设是4个点是相互独立的,实际是有一定相关性的


  • 实际评价框检测的指标是使用IOU,这两者是不等价的,多个检测框可能有相同大小的    Loss,但IOU可能差异很大,为了解决这个问题就引入了IOU LOSS。


2. IoU Loss


  • 本文由旷视提出,发表于2016 ACM


2.1 通过4个坐标点独立回归Building boxes的缺点:


  • 检测评价的方式是使用IoU,而实际回归坐标框的时候是使用4个坐标点,如下图所示,是不等价的;L1或者L2 Loss相同的框,其IoU 不是唯一的


  • 通过4个点回归坐标框的方式是假设4个坐标点是相互独立的,没有考虑其相关性,实际4个坐标点具有一定的相关性


  • 基于L1和L2的距离的loss对于尺度不具有不变性

图(a)中的三组框具有相同的L2 Loss,但其IoU差异很大;图(b)中的三组框具有相同的L1 Loss,但IoU 同样差异很大,说明L1,L2这些Loss用于回归任务时,不能等价于最后用于评测检测的IoU.


2.2 基于此提出IoU Loss,其将4个点构成的box看成一个整体进行回归:

上图中的红色点表示目标检测网络结构中Head部分上的点(i,j),绿色的框表示Ground truth框, 蓝色的框表示Prediction的框,IoU loss的定义如上,先求出2个框的IoU,然后再求个-ln(IoU),实际很多是直接定义为IoU Loss = 1-IoU

IoU Loss 前项推理时的算法实现方式


附录:


论文链接:https://arxiv.org/pdf/1608.01471.pdf


3 GIoU Loss


  • 本文由斯坦福学者提出,发表于CVPR2019


3.1 IoU Loss 有2个缺点:


  • 当预测框和目标框不相交时,IoU(A,B)=0时,不能反映A,B距离的远近,此时损失函数不可导,IoU Loss 无法优化两个框不相交的情况。


  • 假设预测框和目标框的大小都确定,只要两个框的相交值是确定的,其IoU值是相同时,IoU值不能反映两个框是如何相交的。


如上图所示,三种不同相对位置的框拥有相同的IoU=0.33值,但是拥有不同的GIoU=0.33,0.24,-0.1。当框的对齐方向更好一些时GIoU的值会更高一些。


GIoU的实现方式如上,其中C为A和B的外接矩形。用C减去A和B的并集除以C得到一个数值,然后再用框A和B的IoU减去这个数值即可得到GIoU的值。


GIoU的性质


  • GIoU和IoU一样,可以作为一种距离的衡量方式,    


  • GIoU具有尺度不变性


  • 对于     ,有     且     ,因此     当     时,两者相同都等于1,此时     等于1


  • 当     不相交时,    


附录


论文链接:https://arxiv.org/abs/1902.09630


github链接:https://github.com/generalized-iou/g-darknet


参考链接:目标检测算法之CVPR2019 GIoU Loss(https://mp.weixin.qq.com/s/CNVgrIkv8hVyLRhMuQ40EA)


实现结论和启发:


本文提出了GIoU Loss,最终单阶段检测器YOLO v1涨了2个点,两阶段检测器涨点相对较少(RPN的box比较多,两个框未相交的数量相对较少)


4. DIoU Loss


  • 本文发表在AAAI 2020


GIoU Loss不足

当目标框完全包裹预测框的时候,IoU和GIoU的值都一样,此时GIoU退化为IoU, 无法区分其相对位置关系;此时作者提出的DIoU因为加入了中心点归一化距离,所以可以更好地优化此类问题。


启发点:


基于IoU和GIoU存在的问题,作者提出了两个问题:


  • 第一:直接最小化预测框与目标框之间的归一化距离是否可行,以达到更快的收敛速度。


  • 第二:如何使回归在与目标框有重叠甚至包含时更准确、更快。


好的目标框回归损失应该考虑三个重要的几何因素:重叠面积,中心点距离,长宽比。基于问题一,作者提出了DIoU Loss,相对于GIoU Loss收敛速度更快,该Loss考虑了重叠面积和中心点距离,但没有考虑到长宽比;针对问题二,作者提出了CIoU Loss,其收敛的精度更高,以上三个因素都考虑到了。


Distance-IoU Loss


  • 通常基于IoU-based的loss可以定义为     ,其中     定义为预测框     和目标框     的惩罚项。


  • DIoU中的惩罚项表示为     ,其中     分别表示     的中心点,     表示欧式距离,     表示     的最小外界矩形的对角线距离,如下图所示。可以将DIoU替换IoU用于NMS算法当中,也即论文提出的DIoU-NMS,实验结果表明有一定的提升。


  • DIoU Loss function定义为:   

上图中绿色框为目标框,黑色框为预测框,灰色框为两者的最小外界矩形框,d表示目标框和真实框的中心点距离,c表示最小外界矩形框的距离。

DIoU的性质:


  • 尺度不变性


  • 当两个框完全重合时,     ,当2个框不相交时   


  • DIoU Loss可以直接优化2个框直接的距离,比GIoU Loss收敛速度更快


  • 对于目标框包裹预测框的这种情况,DIoU Loss可以收敛的很快,而GIoU Loss此时退化为IoU Loss收敛速度较慢


5. CIoU Loss


Complete-loU Loss

  • CIoU的惩罚项是在DIoU的惩罚项基础上加了一个影响因子     ,这个因子把预测框长宽比拟合目标框的长宽比考虑进去。    ,其中     是用于做trade-off的参数,     ,     是用来衡量长宽比一致性的参数,定义为   


  • CIoU Loss function的定义为   

DIoU和CIoU的提升效果

上表中左边是用5种不同Boudning Box Regression Loss Function的对比,右边是以IoU和GIoU来计算的2种Evaluation的结果;GIoU相对IoU会有2.49点提升,DIoU相对IoU会有3.29点提升,CIoU会有大概5.67点提升,CIoU结合DIoU-NMS使用效果最好,大概会有5.91点提升。

结论:

DIoU Loss和CIoU Loss优化了GIoU Loss的不足,实验证明效果有进一步提升,代码已开源,非常推荐工程上去尝试。

附录:

论文地址:https://arxiv.org/pdf/1911.08287.pdf


github地址:https://github.com/Zzh-tju/DIoU-darknet


6. 后续


本文给大家介绍了目标检测任务中的Bounding Boxes Regression Loss Function的发展演进,后续给大家介绍 Classification Loss 的发展演进,例如Binary Cross Entropy Loss, AUC Loss, focal Loss, GHM Loss, AP Loss等。


参考文献:

[1]FastR-CNN (Smooth L1 Loss; 201509)

[2]UnitBox: An Advanced Object Detection Network (IoU Loss;201608)

[3]Generalized Intersection over Union: A Metric and ALoss for Bounding Box Regression (GIOU Loss;CVPR2019)

[4]Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression(DIOU Loss & CIoU Loss ; CVPR2019)


---End---

科研学术,寒假不打烊!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎加入CVer学术交流群。涉及图像分类、目标检测、图像分割、人脸检测&识别、目标跟踪、GANs、Re-ID、医学影像分析、姿态估计、OCR、SLAM、场景文字检测&识别、PyTorch和TensorFlow等方向。


扫码进群


▲长按关注我们

麻烦给我一个在看!

登录查看更多
0

相关内容

【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
59+阅读 · 2020年6月25日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
160+阅读 · 2020年4月21日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
专知会员服务
41+阅读 · 2020年2月20日
深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
再谈人脸识别损失函数综述
人工智能前沿讲习班
14+阅读 · 2019年5月7日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
机器学习者都应该知道的五种损失函数!
数盟
5+阅读 · 2018年6月21日
已删除
将门创投
4+阅读 · 2018年6月12日
论文 | 用于密集对象检测的 Focal Loss 函数
七月在线实验室
9+阅读 · 2018年1月4日
Polarity Loss for Zero-shot Object Detection
Arxiv
3+阅读 · 2018年11月22日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
59+阅读 · 2020年6月25日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
160+阅读 · 2020年4月21日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
27+阅读 · 2020年4月6日
专知会员服务
41+阅读 · 2020年2月20日
深度学习视频中多目标跟踪:论文综述
专知会员服务
92+阅读 · 2019年10月13日
相关资讯
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
目标检测中边界框的回归策略
极市平台
17+阅读 · 2019年9月8日
再谈人脸识别损失函数综述
人工智能前沿讲习班
14+阅读 · 2019年5月7日
从最优化的角度看待 Softmax 损失函数
极市平台
31+阅读 · 2019年2月21日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
机器学习者都应该知道的五种损失函数!
数盟
5+阅读 · 2018年6月21日
已删除
将门创投
4+阅读 · 2018年6月12日
论文 | 用于密集对象检测的 Focal Loss 函数
七月在线实验室
9+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员