DeepMind最近提出一种新的长程记忆模型——Compressive Transformer(压缩Transformer),这种模型基于Transformer模型做了调整,通过增添压缩记忆模块,有效增加了模型的记忆长度。 而另一方面,为了提升对基于长程记忆的推理问题的研究,DeepMind的研究人员也开发了一个书籍级别的语言数据集PG-19。这个新的基准是目前已有的长时记忆基准的两倍还多,包含的上下文文本是长程语言模型基准测试WikiText-103的10倍以上。