题目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras

深入研究强化学习算法,并通过Python将它们应用到不同的用例中。这本书涵盖了重要的主题,如策略梯度和Q学习,并利用框架,如Tensorflow, Keras,和OpenAI Gym。

Python中的应用增强学习向您介绍了强化学习(RL)算法背后的理论和用于实现它们的代码。您将在指导下了解OpenAI Gym的特性,从使用标准库到创建自己的环境,然后了解如何构建强化学习问题,以便研究、开发和部署基于rl的解决方案。

你将学习:

  • 用Python实现强化学习
  • 使用AI框架,如OpenAI Gym、Tensorflow和Keras
  • 通过云资源部署和培训基于增强学习的解决方案
  • 应用强化学习的实际应用

这本书是给谁看的: 数据科学家、机器学习工程师和软件工程师熟悉机器学习和深度学习的概念。

地址:

https://www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944

目录:

第1章 强化学习导论

在过去的一年里,深度学习技术的不断扩散和发展给各个行业带来了革命性的变化。毫无疑问,这个领域最令人兴奋的部分之一是强化学习(RL)。这本身往往是许多通用人工智能应用程序的基础,例如学习玩视频游戏或下棋的软件。强化学习的好处是,假设可以将问题建模为包含操作、环境和代理的框架,那么代理就可以熟悉大量的任务。假设,解决问题的范围可以从简单的游戏,更复杂的3d游戏,自动驾驶汽车教学如何挑选和减少乘客在各种不同的地方以及教一个机械手臂如何把握对象和地点在厨房柜台上。

第二章 强化学习算法

读者应该知道,我们将利用各种深度学习和强化学习的方法在这本书。然而,由于我们的重点将转移到讨论实现和这些算法如何在生产环境中工作,我们必须花一些时间来更详细地介绍算法本身。因此,本章的重点将是引导读者通过几个强化学习算法的例子,通常应用和展示他们在使用Open AI gym 不同的问题。

第三章 强化学习算法:Q学习及其变体

随着策略梯度和Actor-Critic模型的初步讨论的结束,我们现在可以讨论读者可能会发现有用的替代深度学习算法。具体来说,我们将讨论Q学习、深度Q学习以及深度确定性策略梯度。一旦我们了解了这些,我们就可以开始处理更抽象的问题,更具体的领域,这将教会用户如何处理不同任务的强化学习。

第四章 通过强化学习做市场

除了在许多书中发现的强化学习中的一些标准问题之外,最好看看那些答案既不客观也不完全解决的领域。在金融领域,尤其是强化学习领域,最好的例子之一就是做市。我们将讨论学科本身,提出一些不基于机器学习的基线方法,然后测试几种基于强化学习的方法。

第五章 自定义OpenAI强化学习环境

在我们的最后一章,我们将专注于Open AI Gym,但更重要的是尝试理解我们如何创建我们自己的自定义环境,这样我们可以处理更多的典型用例。本章的大部分内容将集中在我对开放人工智能的编程实践的建议,以及我如何编写这个软件的建议。最后,在我们完成创建环境之后,我们将继续集中精力解决问题。对于这个例子,我们将集中精力尝试创建和解决一个新的视频游戏。

成为VIP会员查看完整内容
0
101

相关内容

深度强化学习 (DRL) 是一种使用深度学习技术扩展传统强化学习方法的一种机器学习方法。 传统强化学习方法的主要任务是使得主体根据从环境中获得的奖赏能够学习到最大化奖赏的行为。然而,传统无模型强化学习方法需要使用函数逼近技术使得主体能够学习出值函数或者策略。在这种情况下,深度学习强大的函数逼近能力自然成为了替代人工指定特征的最好手段并为性能更好的端到端学习的实现提供了可能。

人类从反馈中学习得最好——我们被鼓励采取导致积极结果的行动,而被具有消极后果的决定所阻碍。这种强化过程可以应用到计算机程序中,使它们能够解决经典编程所不能解决的更复杂的问题。深度强化学习实战教你基本概念和术语的深度强化学习,以及实践技能和技术,你将需要把它落实到你自己的项目。

对这项技术

深度强化学习是一种机器学习的形式,人工智能智能体从自己的原始感官输入中学习最优行为。系统感知环境,解释其过去决策的结果,并使用这些信息优化其行为以获得最大的长期回报。众所周知,深度强化学习对AlphaGo的成功做出了贡献,但这并不是它所能做的全部!更令人兴奋的应用程序等待被发现。让我们开始吧。

关于这本书

深度强化学习实战中教你如何编程的代理人,学习和改善的直接反馈,从他们的环境。您将使用流行的PyTorch深度学习框架构建网络,以探索从深度Q-Networks到策略梯度方法再到进化算法的强化学习算法。在你进行的过程中,你会将你所知道的应用到实际操作项目中,比如控制模拟机器人、自动化股票市场交易,甚至构建一个可以下围棋的机器人。

里面有什么

  • 将问题组织成马尔可夫决策过程
  • 深度Q网络、策略梯度法、进化算法等流行算法及其驱动算法的直觉
  • 将强化学习算法应用于实际问题
成为VIP会员查看完整内容
0
191

强化学习是机器学习的一个热门领域,从基础开始: 发现代理和环境如何演变,然后获得它们之间如何相互关联的清晰联系。然后你将学习与强化学习相关的理论,并了解建立强化学习过程的概念。

这本书讨论了对强化学习很重要的算法实现,包括马尔可夫决策过程和半马尔可夫决策过程。下一节将向您展示如何在查看Open AI Gym之前开始使用Open AI。然后您将学习Python中关于增强学习方面的群体智能。

本书的最后一部分从TensorFlow环境开始,并给出了如何将强化学习应用于TensorFlow的概述。还有Keras,一个可以用于强化学习的框架。最后,您将深入研究谷歌的深层思想,并看到可以使用强化学习的场景。

你将学习

  • 吸收强化学习过程的核心概念
  • 使用深度学习和人工智能的高级主题
  • 与Open AI Gym、Open AI和Python一起工作
  • 利用TensorFlow和Keras使用Python进行强化学习

这本书是给谁看的

数据科学家、机器学习和深度学习专业人员、希望适应和学习强化学习的开发人员。

成为VIP会员查看完整内容
0
100

简介: Google一直是引入突破性技术和产品的先驱。在效率和规模方面,TensorFlow也不例外,因此,编写本书只是向读者介绍TensorFlow核心团队所做的这些重要更改。本书着重于机器学习方面的TensorFlow的不同应用,并更深入地探讨了方法的最新变化。对于那些想要用TensorFlow进行机器学习的人来说,这本书是一个很好的参考点。本书分为三个部分。第一篇:使用TensorFlow 2.0进行数据处理。第二部分:使用TensorFlow 2.0构建机器学习和深度学习模型。它还包括使用TensorFlow 2.0的神经语言编程(NLP)。第三部分介绍了如何在环境中保存和部署TensorFlow 2.0模型。这本书对数据分析人员和数据工程师也很有用,因为它涵盖了使用TensorFlow 2.0处理大数据的步骤。想要过渡到数据科学和机器学习领域的读者也会发现,本书提供了实用的入门指南,以后可能会出现更复杂的方面。书中提供的案例研究和示例使您很容易理解和理解相关的基本概念。本书的优势在于其简单性以及将机器学习应用于有意义的数据集。

目录:

  • Chapter 1:tenforflow 2.0介绍
    • tensor
    • TensorFlow 1.0与 Tensorflow 2.0的对比
    • Tensorflow 2.0安装于基础操作
  • Chapter 2:tenforflow 与监督学习
    • 监督机器学习是什么
    • TF2.0实现线性回归
    • 使用TF和Keras的线性回归应用
    • TF2.0实现逻辑回归
    • TF2.0实现boosted树
  • Chapter 3:tenforflow与深度神经网络
    • 什么是神经网络
    • 前向传播与反向传播
    • TF2.0构建神经网络
    • 深度神经网络
    • TF2.0构建深度神经网络
    • 使用Keras模型估量
    • 总结
  • Chapter 4:图片与Tensorflow
    • 图片处理
    • 卷积神经网络
    • TF2.0与卷积神经网络
    • 迁移学习
    • TF2.0与变分自编码器
    • 总结
  • Chapter 5:TF2.0与自然语言处理(NLP)
    • NLP概述
    • 文本处理
    • 文本分类与TF
    • TF projector
  • Chapter 6:TF模型
    • TF部署
    • 模型部署的Python
    • 基于TF的Keras模型
成为VIP会员查看完整内容
0
173
小贴士
相关VIP内容
专知会员服务
166+阅读 · 2020年4月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
235+阅读 · 2020年3月17日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
100+阅读 · 2020年3月1日
【强化学习】深度强化学习初学者指南
专知会员服务
113+阅读 · 2019年12月14日
MIT新书《强化学习与最优控制》
专知会员服务
152+阅读 · 2019年10月9日
相关论文
A Modern Introduction to Online Learning
Francesco Orabona
15+阅读 · 2019年12月31日
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye,Dhiraj Gandhi,Abhinav Gupta,Shubham Tulsiani
4+阅读 · 2019年10月8日
Generalization and Regularization in DQN
Jesse Farebrother,Marlos C. Machado,Michael Bowling
5+阅读 · 2019年1月30日
Brett Daley,Christopher Amato
4+阅读 · 2018年10月23日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
FuzzerGym: A Competitive Framework for Fuzzing and Learning
William Drozd,Michael D. Wagner
3+阅读 · 2018年7月19日
Vinicius Zambaldi,David Raposo,Adam Santoro,Victor Bapst,Yujia Li,Igor Babuschkin,Karl Tuyls,David Reichert,Timothy Lillicrap,Edward Lockhart,Murray Shanahan,Victoria Langston,Razvan Pascanu,Matthew Botvinick,Oriol Vinyals,Peter Battaglia
4+阅读 · 2018年6月5日
Ignasi Clavera,Anusha Nagabandi,Ronald S. Fearing,Pieter Abbeel,Sergey Levine,Chelsea Finn
7+阅读 · 2018年3月30日
Shikun Liu,Edward Johns,Andrew J. Davison
16+阅读 · 2018年3月28日
Matthias Plappert,Rein Houthooft,Prafulla Dhariwal,Szymon Sidor,Richard Y. Chen,Xi Chen,Tamim Asfour,Pieter Abbeel,Marcin Andrychowicz
3+阅读 · 2018年1月31日
Top