成为VIP会员查看完整内容
VIP会员码认证
首页
主题
发现
会员
服务
注册
·
登录
0
1000亿参数!阿里&清华发布最大规模的中文多模态预训练模型M6
2021 年 3 月 3 日
AI科技评论
作者 | 蒋宝尚、陈彩娴
编辑 | 青暮
近日,阿里巴巴联合清华大学发表了一项新研究,提出了
参数规模达到1000亿的中文预训练模型 M6
。我们可以看到,这项研究的通讯作者包括达摩院智能计算实验室资深算法专家杨红霞,以及清华大学计算机与科学技术系教授唐杰。
论文链接:https://arxiv.org/pdf/2103.00823.pdf
在这项新工作中,研究人员为了弥补大型预训练模型家族中(比如GPT-3、DALL-E等)中文数据集和中文模型的缺失,构建了一个最大的中文多模态预训练数据集M6-Corpus,
该数据集包含超过 1.9 TB图像和 292GB 文本
,涵盖了广泛的领域,并提出了一种称为“M6”(Multi-Modality to MultiModality Multitask Mega-transformer)的跨模态预训练方法,以便对单模态和多模态的数据进行统一的预训练。
M6的应用适用于广泛的任务,包括产品描述生成、视觉问答、问答、中国诗歌生成等,实验结果表明M6的表现优于一系列强大的基准。并且,
研究人员还专门设计了文本引导的图像生成任务
,从而可以实现
DALL-E
那样的“sao操作”,并证明经过微调的 M6 可以创建具有高分辨率和丰富细节的高质量图像。
1
应用
1、文本-图像生成
文本:绵羊毛商务休闲西服套装
文本:减震透气跑鞋
文本:军旅风迷彩高跟鞋
文本:机器人矢量插图
2、视觉问答
图注:论文将原始问题题调成设计模式,并使用了“?”与“答案”等经典 token。这个预训练模型可以识别问题,提供答案与更深入的描述。
3、图片文字说明
图注:论文仅将图像特征作为输入,并没有提供任何提示。
4、问题回答
图注:提示(包含问题)成功触使模型生成论坛讨论形式的长文本。
5、诗歌生成
图注:提示和约束掩码协同工作,根据给定标题生成一首诗。
M6-Corpus涵盖了百科全书、问答、论坛讨论、产品说明等类型的数据集。此外,研究人员设计了完善的清洁程序以确保数据质量 。
M6 模型基于Transformer,并且已经过多项任务的预训练,使模型具有对单模态和多模态的理解和生成的能力。
研究人员将 M6 模型的大小从 100 亿个参数扩展到 1000 亿个参数,
成为有史以来最大的中文预训练模型。
和DALL-E类似,研究人员在M6中以两阶段框架来生成图像。
首先用已训练的量化向量生成对抗网络以离散图像编码表示图像,然后使用预训练的M6来学习文本和编码之间的关系。这种学习方法可以桥接这两种模态,并实现可控的文本到图像生成。
最后,研究人员表示,通过精心设计的大规模分布式训练优化,M6在训练速度上具有明显的优势,并大大降低了训练成本,从而为更广泛地使用多模态预训练提供了可能性。
2
数据集
与现有的英文数据集相比,中文语料库的规模和形式略显不足。
另外,对于多模态预训练而言,用图文数据进行训练显然是比文本数据更好的选择。
这篇论文在统一自然语言预训练和多模态的预训练的同时,构建了纯文本和图像-文本对的大型数据集M6-Corpus。这些多模态预训练的语料库满足以下特点:
1.句子长度正常,语言流畅,不含有重复标点符号、随意组合字符等无意义的符号;
2.图像分辨率足够高,以人类能够识别为标准
3.文字、图片不含有色情、暴力等违法内容;
4.图像和文本应具有语义关联性
5.数据集涉及的领域广阔,目标是能够赋予模型足够的世界知识。
最后,研究者根据以上特点收集的多模态预训练的语料库的来源如上,包括百科全书、爬行网页、社区问答、论坛、产品描述等等。
为了突出数据集的优势,研究者还和“友商”进行了比较,经过文本规模、图像规模、是否多模态几项要素对比,研究者得出结论:
M6-Corpus是首个大规模、多模态、多领域的中文预训练语料库。
数据收集并不容易,研究者还进行了复杂的预处理
,对于文本数据,删除了HTML标记和重复的标点符号,只保留中文和英文的字符和标点符号。对于短于5个字符的标题和短于15个字符的文本内容,研究者予以删除。
此外,研究者使用其“内部垃圾邮件检测器”筛选包含某些政治问题、色情或脏话等不合适的句子。为了保持文本的语言接受度,还建立了一个语言模型进行评估文本的困惑程度,去掉了困惑程度高的句子。
对于图片数据,只有超过5000像素的图像才有资格被保留用于预训练。
并利用一系列分类器筛出非法内容,用预先训练好的图像评分系统对图像质量进行评价,择优录取。
整个数据集的收集可谓用心良苦,但也保证了数据集的高质量。百科全书、网页和产品描述三类数据展示如上。
百科全书、社区问答、论坛讨论这些文本数据的展示如上。
3
模型架构
此预训练模型的架构名为M6,Multi-Modality-to-Multi-Modality Multitask Mega-transformer。
顾名思义,此模型有两个特点:一个是大,模型规模大,包含参数千亿;另一个是多模态,能够处理文本到图像的任务。
另外,从模型的名字我们也可以看出,基础架构是自注意力机制的transformer。
图注:M6预训练框架一览
主流的多模态预训练方法通过目标检测将图像转换为特征序列。
目标检测器的性能及其主干的表现力极大地影响了预先训练的模型在下游任务中的最终性能。以电子商务中的数据图像为例。研究者随机抽取1百万幅图像,并对图像进行目标检测。结果表明,90%以上的图像包含的对象少于5个,且对象之间的重叠度也很高。
为了解决上述问题,研究者用了一个简单但有效的解决方案:
将图像分割成多个块,并用经过训练的特征提取器(如ResNet-50)提取2D的特征。
然后,按照特征的位置排列成一个序列。
据悉,单词序列输入的处理比较简单。将WordPiess和掩码应用到单词序列,并在BERT之后将它们整合进嵌入层。
另外在M6模型框架中,研究者使用不同的掩码策略(masking strategies )进行实现编码和解码。输入分为三个部分,包括视觉输入、掩码的语言输入和完整的语言输入。作者将双向掩码应用于视觉输入和掩码的语言输入,并将因果掩码应用于完整的语言输入。
因此,该模型在同一框架中实现了编码和解码功能。
研究者还使用多任务设置预先训练模型,包括文本到文本转换、图像到文本转换的和多模态转换。模型还可以处理不同模态的信息,并同时执行单模态和跨模态的理解和生成。
M6模型一共有两个版本,根据模型包含的参数不用,分为M6-10B(包含100亿个参数)、M6-100B(包含1000亿个参数)。
模型大小不同,意味着神经网络的隐藏层大小和层数不同,更大的模型显然能更好的表示、学习世界知识。
当然,研究者也采取了节省GPU内存手段:应用混合精度训练和激活检查点(activation checkpointing )。尽管如此,M6模型还是由于太大不能容纳在单个GPU中。
图注:不同规模模型的介绍
M6-100B并不是M6-10B的简单扩大版本
,在扩大参数的过程中,研究者使用过了专家混合( MoE,Mixture-of-Experts)。考虑到MOE需要Mesh-TensorFlow以及TPU,有些研究人员使用这么计算资源有门槛,因为论文作者用框架Whale实现了带有MOE的M6-100B,执行与GPU的模型并行性。
4
总结与讨论
当下最火的AI应用是什么?毫无疑问是OpenAI名为DALL-E的神经网络模型,它可以魔法一般按照自然语言文字描述直接生成对应图片。生成效果非常神奇,有人说自然语言与视觉的壁垒正在被逐渐打通。
而清华大学和阿里巴巴公布了M6模型,也在一定程度上证明了中国企业和学界也有能力开发出魔法般的AI技术。
图注:M6模型根据文本内容,自动设计特定风格图片(图片来源网络,侵删)
对此,在reddit上,网友评:虽然和OpenAI的工作类似,但是MOE方面的工作是极具创新的。另外,仿佛每个人,即使没有AI背景的“妈妈”在此之后也能轻松训练大规模多模态模型。
还有网友认为:中国拥有无与伦比的大规模数据,非常适合大型多模态AI训练。
另一方面这种“跨界模型”也正是当下的研究趋势,正如之前OpenAI 联合创始人、首席科学家 Ilya Sutskever 在推特上发文表示道:人工智能的长期目标是构建多模态神经网络,即AI能够学习不同模态之间的概念(文本和视觉领域为主),从而更好地理解世界。
M6模型的发布也意味着,中国在工程和技术上有能力做出兼顾训练效率和生成精度的多模态预训练模型,为迎接下一代人工智能打下基础。
由于微信公众号试行乱序推送,您可能不再能准时收到AI科技评论的推送。为了第一时间收到AI科技评论的报道, 请将“
AI科技评论
”设为
星标账号
,以及常点文末右下角的“
在看
”。
登录查看更多
点赞并收藏
0
暂时没有读者
2
权益说明
本文档仅做收录索引使用,若发现您的权益受到侵害,请立即联系客服(微信: zhuanzhi02,邮箱:bd@zhuanzhi.ai),我们会尽快为您处理
相关内容
多模态预训练
关注
3
千亿参数!阿里清华联合推理史上最大中文多模态预训练器M6!
专知会员服务
42+阅读 · 2021年3月3日
【普林斯顿陈丹琦团队】使预训练语言模型成为更好的少样本学习器
专知会员服务
32+阅读 · 2021年1月4日
华为等发布《视觉Transformer转换器》综述论文,21页pdf
专知会员服务
86+阅读 · 2020年12月25日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【KDD2020-Google】神经输入搜索的大规模深度推荐模型
专知会员服务
23+阅读 · 2020年9月8日
1750亿参数!GPT-3来了!31位作者,OpenAI发布小样本学习器语言模型
专知会员服务
73+阅读 · 2020年5月30日
【CVPR2020-中科院计算所】多模态GNN:在视觉信息和场景文字上联合推理
专知会员服务
61+阅读 · 2020年4月7日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
57+阅读 · 2020年3月6日
谷歌提出“T5” 新NLP模型,突破迁移学习局限,多基准测试达SOTA!
专知会员服务
41+阅读 · 2020年2月26日
预训练语言模型BERT,Jacob Devlin斯坦福演讲PPT:BERT介绍与答疑,35页ppt
专知会员服务
112+阅读 · 2020年1月7日
大规模跨领域中文任务导向多轮对话数据集及模型CrossWOZ
AINLP
10+阅读 · 2020年4月16日
语音版BERT?滴滴提出无监督预训练模型,中文识别性能提升10%以上
机器之心
7+阅读 · 2019年11月1日
谷歌 | 最新110亿参数的T5模型17项NLP任务霸榜SuperGLUE!
机器学习算法与Python学习
8+阅读 · 2019年10月27日
【微软ICLR2020提交论文】多模态预训练表示UNITER:通用图像-文本语言表示学习
专知
50+阅读 · 2019年10月20日
微软亚研提出VL-BERT:通用的视觉-语言预训练模型
机器之心
15+阅读 · 2019年9月3日
迄今最大模型?OpenAI发布参数量高达15亿的通用语言模型GPT-2
中国人工智能学会
7+阅读 · 2019年2月15日
中文NLP福利!大规模中文自然语言处理语料
新智元
37+阅读 · 2019年2月13日
GLUE排行榜上全面超越BERT的模型近日公布了!
机器之心
9+阅读 · 2019年2月13日
NLP Chinese Corpus项目:大规模中文自然语言处理语料
AINLP
13+阅读 · 2019年2月11日
BERT霸榜问答任务,谷歌新基准模型缩小AI与人类差距50%
未来产业促进会
4+阅读 · 2019年1月31日
Novel bivariate autoregressive model for predicting and forecasting irregularly observed time series
Arxiv
0+阅读 · 2021年4月25日
Performance of Empirical Risk Minimization for Linear Regression with Dependent Data
Arxiv
0+阅读 · 2021年4月25日
Escaping Saddle Points with Stochastically Controlled Stochastic Gradient Methods
Arxiv
0+阅读 · 2021年4月23日
Multiscale Vision Transformers
Arxiv
1+阅读 · 2021年4月22日
InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining
Arxiv
0+阅读 · 2021年4月22日
M6: A Chinese Multimodal Pretrainer
Arxiv
8+阅读 · 2021年3月2日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
X-BERT: eXtreme Multi-label Text Classification with BERT
Arxiv
12+阅读 · 2019年7月4日
Zero-Shot Sketch-Image Hashing
Arxiv
5+阅读 · 2018年3月6日
DeepWalk: Online Learning of Social Representations
Arxiv
8+阅读 · 2014年6月27日
VIP会员
自助开通(推荐)
客服开通
详情
相关主题
多模态预训练
模态
多模态
预训练
预训练模型
多模态预训练模型
相关VIP内容
千亿参数!阿里清华联合推理史上最大中文多模态预训练器M6!
专知会员服务
42+阅读 · 2021年3月3日
【普林斯顿陈丹琦团队】使预训练语言模型成为更好的少样本学习器
专知会员服务
32+阅读 · 2021年1月4日
华为等发布《视觉Transformer转换器》综述论文,21页pdf
专知会员服务
86+阅读 · 2020年12月25日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【KDD2020-Google】神经输入搜索的大规模深度推荐模型
专知会员服务
23+阅读 · 2020年9月8日
1750亿参数!GPT-3来了!31位作者,OpenAI发布小样本学习器语言模型
专知会员服务
73+阅读 · 2020年5月30日
【CVPR2020-中科院计算所】多模态GNN:在视觉信息和场景文字上联合推理
专知会员服务
61+阅读 · 2020年4月7日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
57+阅读 · 2020年3月6日
谷歌提出“T5” 新NLP模型,突破迁移学习局限,多基准测试达SOTA!
专知会员服务
41+阅读 · 2020年2月26日
预训练语言模型BERT,Jacob Devlin斯坦福演讲PPT:BERT介绍与答疑,35页ppt
专知会员服务
112+阅读 · 2020年1月7日
热门VIP内容
开通专知VIP会员 享更多权益服务
中文版 | 人工智能如何重塑现代战争:乌克兰战场的启示
【MIT博士论文】通过强化学习的生成式发现
中文版 | 实现决策优势:人工智能在小规模战争中的运用
面向图像处理逆问题的扩散模型研究综述
相关资讯
大规模跨领域中文任务导向多轮对话数据集及模型CrossWOZ
AINLP
10+阅读 · 2020年4月16日
语音版BERT?滴滴提出无监督预训练模型,中文识别性能提升10%以上
机器之心
7+阅读 · 2019年11月1日
谷歌 | 最新110亿参数的T5模型17项NLP任务霸榜SuperGLUE!
机器学习算法与Python学习
8+阅读 · 2019年10月27日
【微软ICLR2020提交论文】多模态预训练表示UNITER:通用图像-文本语言表示学习
专知
50+阅读 · 2019年10月20日
微软亚研提出VL-BERT:通用的视觉-语言预训练模型
机器之心
15+阅读 · 2019年9月3日
迄今最大模型?OpenAI发布参数量高达15亿的通用语言模型GPT-2
中国人工智能学会
7+阅读 · 2019年2月15日
中文NLP福利!大规模中文自然语言处理语料
新智元
37+阅读 · 2019年2月13日
GLUE排行榜上全面超越BERT的模型近日公布了!
机器之心
9+阅读 · 2019年2月13日
NLP Chinese Corpus项目:大规模中文自然语言处理语料
AINLP
13+阅读 · 2019年2月11日
BERT霸榜问答任务,谷歌新基准模型缩小AI与人类差距50%
未来产业促进会
4+阅读 · 2019年1月31日
相关论文
Novel bivariate autoregressive model for predicting and forecasting irregularly observed time series
Arxiv
0+阅读 · 2021年4月25日
Performance of Empirical Risk Minimization for Linear Regression with Dependent Data
Arxiv
0+阅读 · 2021年4月25日
Escaping Saddle Points with Stochastically Controlled Stochastic Gradient Methods
Arxiv
0+阅读 · 2021年4月23日
Multiscale Vision Transformers
Arxiv
1+阅读 · 2021年4月22日
InterBERT: Vision-and-Language Interaction for Multi-modal Pretraining
Arxiv
0+阅读 · 2021年4月22日
M6: A Chinese Multimodal Pretrainer
Arxiv
8+阅读 · 2021年3月2日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
X-BERT: eXtreme Multi-label Text Classification with BERT
Arxiv
12+阅读 · 2019年7月4日
Zero-Shot Sketch-Image Hashing
Arxiv
5+阅读 · 2018年3月6日
DeepWalk: Online Learning of Social Representations
Arxiv
8+阅读 · 2014年6月27日
大家都在搜
用户画像
量化交易
模型研究综述
扩散模型
无人机系统
t-sne
银行
RFID
MMMia
基于Pytorch的卷积算子的推导和实现
Top
提示
微信扫码
咨询专知VIP会员与技术项目合作
(加微信请备注: "专知")
微信扫码咨询专知VIP会员
Top