[1] Shao, S.; Zhao, Z.; Li, B.; Xiao, T.; Yu, G.; Zhang, X.; and Sun, J. 2018. Crowdhuman: A benchmark for detecting human in a crowd. arXiv:1805.00123.[2] Zhang, K., Xiong, F., Sun, P., Hu, L., Li, B., & Yu, G. (2019). Double Anchor R-CNN for Human Detection in a Crowd.ArXiv, abs/1909.09998.[3] Lin, Tsung-Yi, et al. "Focal loss for dense object detection."Proceedings of the IEEE international conference on computer vision. 2017.[4]Piotr Dolla ́r, Christian Wojek, Bernt Schiele, and Pietro Per- ona. Pedestrian detection: A benchmark. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Confer- ence on, pages 304–311. IEEE, 2009.[5]Andreas Geigerand Philip Lenzand Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recog- nition (CVPR), 2012.[6]Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolla ́r, and C Lawrence Zitnick. Microsoft coco: Common objects in context. InEuropean Conference on Computer Vision, pages 740–755. Springer, 2014.[7]Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. Citypersons: A diverse dataset for pedestrian detection.[8]Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection."Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.[9]He, Kaiming, et al. "Mask r-cnn."Proceedings of the IEEE international conference on computer vision. 2017.[10]Cai, Zhaowei, and Nuno Vasconcelos. "Cascade r-cnn: Delving into high quality object detection."Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.[11]Wang, Xinlong, et al. "Repulsion loss: Detecting pedestrians in a crowd."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.[12]Bodla, Navaneeth, et al. "Soft-NMS--Improving Object Detection With One Line of Code."Proceedings of the IEEE international conference on computer vision. 2017.